
Sneak-Path Constraints in Memristor
Crossbar Arrays

Yuval Cassuto∗, Shahar Kvatinsky∗, and Eitan Yaakobi†
∗Electrical Engineering Department, Technion – Israel Institute of Technology

†Electrical Engineering Department, California Institute of Technology
ycassuto@ee.technion.ac.il, skva@tx.technion.ac.il, yaakobi@caltech.edu

Abstract—In a memristor crossbar array, a memristor
is positioned on each row-column intersection, and its
resistance, low or high, represents two logical states. The
state of every memristor can be sensed by the current
flowing through the memristor. In this work, we study
the sneak path problem in crossbars arrays, in which
current can sneak through other cells, resulting in reading
a wrong state of the memristor. Our main contributions
are a new characterization of arrays free of sneak paths,
and efficient methods to read the array cells while avoiding
sneak paths. To each read method we match a constraint on
the array content that guarantees sneak-path free readout,
and calculate the resulting capacity.

I. INTRODUCTION

The memristor technology [8] allows packing stor-
age cells in an unprecedented density, over a simple
crossbar structure. The blessing of high storage density
and architectural simplicity comes with a major caveat:
data-dependent behavior [6]. The read accuracy, speed,
and power consumption in memristor storage may all
vary significantly depending on the instantaneous data
stored in the crossbar array. This is clearly an undesired
property for a storage medium, and a motivation for data
representations that ensure that the physical content of the
array corresponds to a well-behaving device. Memristor
storage has already motivated a novel data representation
for one instantiation of the data-dependence problem [4].
Here we address another very significant data-dependent
phenomenon called sneak paths [6], causing the read
correctness to depend on the array content.

To understand the sneak-path problem in memristor ar-
rays, we first show a simplified schematic of a memristor
array in Fig. 1(a). Each row-column pair is connected by

000

00

00

00

1

1

1

11

11

11

1

1

2

2

2

2

3

33

3

4

4

4

4

(a) (b)

Fig. 1. (a) A memristor array as an array of programmed
resistors – white: high resistance, black: low resistance. (b) The
corresponding logical values of the memristor array.

a resistor that can be in either the high-resistance state
(marked white) or the low-resistance state (marked black).

In Fig. 1(b) appear the corresponding logical values of
the cells: logical ”0” for the high-resistance state, and
logical ”1” for the low-resistance state. The sneak-path
problem occurs when a resistor in the high-resistance state
(white) is being read, while a series of resistors in the
low-resistance state (black) exists in parallel to it, thereby
causing it to be erroneously read as low-resistance. It
is shown by the dashed line in Fig. 1(a) that the white
resistor in (row,column) location (4, 1) has a sneak path
that traverses the black resistors in locations (4, 3), (1, 3)
and (1, 1). This dashed path is in parallel to the main
current path of (4, 1) marked by a solid line.

In this paper we seek to combat memristor-array sneak
paths using information-theoretic techniques. We first
note that first such an attempt was already presented in [9]
by forcing the number of zeros and ones in every row and
column to be the same. While this solution can reduce
the sneak path effect, it does not eliminate it completely,
as we seek to study in this work. Considering a full
m× n memristor array, exact counting of the number of
array assignments that guarantee sneak-path free readout
was found by Sotiriadis in [7]. Our contributions start in
Section II by offering an alternative characterization of
sneak-path free arrays, which enables the main results of
the paper. In Section III we give a capacity-achieving
efficient encoder that maps unrestricted information to
sneak-path free arrays. In Section IV, we depart from
the full-array model and consider two methods to avoid
sneak paths by selectively grounding array rows. These
methods enable a tradeoff between high power consump-
tion (grounding many rows increases read power) and
low storage capacity (grounding few rows enforces harder
constraints and reduces capacity, in particular ungrounded
full array results in zero capacity [7]). To the second
grounding method we match a parameterized constraint,
and calculate the resulting capacity. In this method, it
turns out that a 1-dimensional (d,∞) run-length limited
constraint provides sufficiency, and we prove that it also
has the same capacity. The most interesting contribu-
tion from practical standpoint is that among these two
approaches it is better to read a memristor array by
grounding all rows outside a symmetric set of rows
around the read row.

II. CHARACTERIZATION OF THE SNEAK PATHS

Let us first define formally and mathematically the
sneak-path constraint.

Definition 1. Given a binary array A of size m×n, we say

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

156

that there is a sneak path of length 2k + 1 affecting the
cell at position (i, j) if ai,j = 0 and there exist 2k positive
integers 1 6 r1, . . . , rk 6 m and 1 6 c1, . . . , ck 6 n for
some k > 1 such that the following 2k + 1 cells satisfy

ai,c1=ar1,c1=ar1,c2= · · · =ark−1,ck=ark,ck=ark,j =1.

An array A satisfies the sneak-path constraint if it has no
sneak paths and then it is called a sneak-path-free array.

The sneak-path problem was already introduced and
studied in [7] with application to nanowire resistive cross-
bar switching networks (R-CSNs). This previous work
addressed the same problem of high-resistance cells being
“short-circuited” by paths of cells at low-resistance state.
The contributions of [7] include an exact count of the
number of ”0”,”1” m×n arrays that are distinguishable by
measuring resistance at the array row/column terminals.
This count can be easily seen to be identical to the
number of distinct sneak-path-free arrays. However, the
more refined characterization of the sneak-path constraint
pursued here allows obtaining superior storage informa-
tion rates for more general sneak-path problems motivated
by memristor arrays. For completeness and clarity we
include in the presentation results for the simple sneak-
path model, which can be implied by results in [7].

For the ability to extend sneak-path-free coding results
to more general models, it is useful to represent the
sneak-path constraint by a new, more succinct constraint,
which is later shown to be equivalent. It turns out that
the existence of sneak paths in a memristor array can be
perfectly characterized by an abstract constraint, which
we call the isolated zero-rectangle constraint.

Definition 2. A binary array A has an isolated zero-
rectangle if there are four positive integers i1 6= i2 and
j1 6= j2 such that

ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2 = 3.

That is, the value of exactly one out of the four cells in the
rectangle formed by these four vertices is zero.

An array A satisfies the isolated zero-rectangle con-
straint if it has no isolated zero-rectangles and then it is
called an isolated zero-rectangle free array.

According to the last definition, a ”0” belongs to
an isolated-zero rectangle if it is part of any rectangle
in the array, all of whose remaining vertices are ”1”s.
For example, the cell in the (4, 1) location in Fig. 1(b)
belongs to an isolated-zero rectangle because it is part
of a rectangle (marked by a dashed line) with three ”1”s
at locations (1, 1), (1, 3) and (4, 3). There are no other
isolated-zero rectangles in the array.

Next we show that a memristor array is free of sneak
paths if and only if it has no isolated zero-rectangles.
Note that sneak paths may be of any odd length greater
than one, not necessarily three as in the rectangle case.
However, this property tells us that rectangles, i.e. sneak
paths of length three, provide a complete characterization
of the existence of sneak paths.

Theorem 3. The sneak path constraint and the isolated
zero-rectangle constraint are equivalent.

Proof: We will show that an array has a sneak path
if and only if it has an isolated zero-rectangle. We show
only one direction as the other one is immediate.

Let us assume to the contrary that there exists an array
A which has a sneak path affecting the (i, j) cell and yet
it satisfies the isolated zero-rectangle constraint. First note
that ai,j = 0 and there is a path as defined in Definition 1
starting at the i-th row and ending at the j-th column.
Assume the vertices of this path are the cells at positions
(i, c1), (r1, c1), (r1, c2), . . . , (rk−1, ck), (rk, ck), (rk, j)
for some k > 1, and these array cells have value ”1”.

We will show by induction that for for all 1 6 h 6 k,
arh,c1 = 1. This property holds for h = 1 since the
(r1, c1) cell is part of the sneak path. Assume the claim
is true for some 1 6 h < k, that is, arh,c1 = 1.
We will show that arh+1,c1 = 1 as well. Note that the
vertices (rh, ch+1), (rh+1, ch+1) belong to the sneak path
and hence arh,ch+1

= arh+1,ch+1
= 1. Therefore, in the

rectangle formed by the vertices

(rh, ch+1), (rh, c1), (rh+1, ch+1), (rh+1, c1)

the first three cells have value one. Therefore, according
to the assumption that there is no isolated zero-rectangle
we conclude that arh+1,c1 = 1.

From the last claim we get in particular that ark,c1 = 1.
Since the vertices (i, c1), (rk, j) belong to the sneak path,
we have ai,c1 = ark,j = 1 and since the sneak path affects
the cell at position (i, j) we also have ai,j = 0. Therefore,
there exists a sneak-path (i, c1), (rk, c1), (rk, j) of length
3 in contradiction with the assumption that there are no
isolated-zero rectangles.

From the isolated zero-rectangle characterization it is
implied that for sneak paths to not exist in the array,
the ”1” cell locations in any pair of rows (or columns)
must have either full overlap or no overlap. For example,
rows 2,3 in Fig. 1(b) have full overlap of ”1”s, rows 2,4
have no overlap of ”1”s, and thus no sneak paths exist
between these row pairs. However, rows 1,4 have neither
full-overlap nor no-overlap, and thus introduce a sneak
path.

Lemma 4. An array A is an isolated zero-rectangle free
array if and only if the ”1”s in every two rows either
completely overlap or are disjoint.

Proof: It is clear that the condition is sufficient.
If ”1”s either completely overlap or have no overlap
between every pair of rows, then every rectangle has
either 0,1, 2 or 4 ”1”s.

To prove necessity, assume to the contrary that the
condition does not hold. That is, there are two rows, say
the i-th and j-th rows, such that the ones in these rows
neither overlap nor are disjoint. Assume without loss of
generality that there are more ones in the i-th row and
assume that there are ℓi > 2 ones in positions 1, . . . , ℓi.
Since the ones in the two rows are not disjoint, there
is 1 6 k 6 ℓi such that aj,k = 1, and since they do
not fully overlap, there is 1 6 h 6 ℓi, h 6= k such
that aj,k = 0. Thus, the rectangle formed by the vertices
{(i, k), (i, h), (j, k), (j, h)} is an isolated-zero rectangle
and so the array A does not satisfy the isolated zero-
rectangle constraint.

2013 IEEE International Symposium on Information Theory

157

Let N(m,n) be the number of m×n arrays satisfying
the isolated zero-rectangle constraint. An exact count of
N(m,n) (for an equivalent constraint) is derived in [7].
For the sake of completeness, we provide a proof of the
result that uses the isolated zero-rectangle constraint and
its characterization in Lemma 4.

First, we denote by S(k, ℓ) the number of distinct ways
that a set of k elements can be partitioned into ℓ nonempty
subsets, where it is known that

S(k, ℓ) =
1

ℓ!

ℓ
∑

t=0

(−1)ℓ−t

(

ℓ

t

)

t
k =

1

ℓ!

ℓ
∑

t=0

(−1)t
(

ℓ

t

)

(ℓ− t)k.

This is known as the Stirling number of the second kind.

Lemma 5. The value N(m,n) is expressed by
N(m,n) = 1

+

m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)

min{m−i,n−j}
∑

ℓ=1

S(m− i, ℓ)S(n− j, ℓ)ℓ!.

Proof: Assume A is an array which satisfies the
isolated zero-rectangle constraint, which is not the all zero
array. Assume that A has i zero rows and j zero columns
where 0 6 i 6 m − 1 and 0 6 j 6 n − 1. There are
(

m
i

)

options to choose these rows and
(

n
j

)

to choose the

columns. After removing these i rows and j columns we
obtain an (m− i)× (n− j) array A′ with no zero rows
or zero columns.

According to Lemma 4, the rows of A′ can be par-
titioned into some 1 6 ℓ 6 m − i sets such that the
rows in every set are identical. The number of distinct
ways to partition the m− i rows into ℓ nonempty sets is
S(m− i, ℓ). Note that if the rows are either identical or
their ”1” positions do not overlap then the same property
holds for the columns. Therefore, the columns can be
partitioned into ℓ nonempty sets, where 1 6 ℓ 6 n − j
and the number of such options is similarly S(n− j, ℓ).
Finally, there are ℓ! options to match between the ℓ sets
of rows and ℓ sets of columns, yielding the expression

m−1
∑

i=0

n−1
∑

j=0

(

m

i

)(

n

j

)min{m−i,n−j}
∑

ℓ=1

S(m− i, ℓ)S(n− j, ℓ)ℓ!,

for the number of possible arrays A. Together with the
all zero array, we get the result stated in the lemma.

The second, more compact, expression for N(m,n)
in [7] can similarly be obtained using the isolated zero-
rectangle constraint (proof omitted).

Lemma 6. The value N(m,n) can be expressed by

N(m,n) =

min{m,n}
∑

ℓ=0

S(m+ 1, ℓ+ 1)S(n+ 1, ℓ+ 1)ℓ!.

Unfortunately, the asymptotic behavior of the value
N(m,n) for m and n large enough states that
log2 N(m,n) ≈ (m + n) log2(m + n) in case both m
and n approach infinity and the ratio m/n approaches
some positive number [7]. Thus, under these conditions
it is derived that

log2 N(m,n)

mn
−→ 0,

which implies a 0 asymptotic storage capacity. In fact,
we can show that this behavior holds for any values of

m and n which approach infinity (that is, the ratio m/n
does not have to approach to a positive number). This
indicates that the sneak path constraint is too strong, and
we need to find milder ways to avoid sneak paths without
ending up with zero capacity. This will be the topic of
Section IV.

III. ENCODING OF SNEAK PATH FREE ARRAYS

Even though the asymptotic storage capacity of the
sneak path constraint approaches zero for m and n large
enough, the encoding problem of such arrays is still
important. For simplicity we assume in this section that
n = m and they are both large enough.

In [7], a low complexity and very efficient mapping
was presented, however the number of information bits
which this mapping can carry is n logn (for simplicity
it was assumed that n is a power of two but that can
be easily modified to arbitrary n). However, according
to the derivations in [7], the number of bits that can
be represented by all sneak-path free arrays is roughly
2n logn. Thus, the mapping in [7] reaches approximately
only a half of the number of bits that could be stored.

We show here another mapping that even though has
higher encoding and decoding complexities, can asymp-
totically reach the maximum number of bits that can
be represented, i.e. 2n logn. To simplify the mapping
presentation, we dropped all floors and ceilings, so some
of the values are not necessarily integers as required.
This may incur a small loss in the number of stored bits,
however this loss is negligible.

Let S1 be the set of all partitions of the numbers
{1, . . . , n} into L groups, each consisting of n

L numbers.
The size of S1 is

s1 = |S1| =
n!

(

n
L

)

!L · L!
.

Assume for now that there is a one-to-one mapping with
efficient encoding and decoding maps

F1 : {0, 1}log s1 → S1

between all binary vectors of length log s1 and S1. Let
S2 be the set of all permutations of L numbers, so s2 =
|S2| = L!, and similarly, assume that there is a mapping
with efficient encoding and decoding maps

F2 : {0, 1}log s2 → S2.

Our approach follows the proof of Lemma 5, which
uses the if and only if condition in Lemma 4. We encode
only arrays where the rows resp. columns are partitioned
into L sets of n/L rows, columns, respectively. Thus,
every array is represented by: 1) a partition of the rows,
that is, an element from S1, 2) a partition of the columns,
again, an element from S1, and 3) a mapping between the
L sets of rows and L sets of columns, i.e., an element
from S2. The encoding and decoding maps will be clear
from the encoding and decoding of the mappings F1 and
F2.

The number of bits that can be stored by this con-
struction is N = log (s1 · s1 · s2) = 2 log s1 + log s2. We
approximate this value while taking logm! ≈ m logm
for m large enough. Therefore,

2013 IEEE International Symposium on Information Theory

158

N = 2 log s1 + log s2 = 2 log

(

n!
(

n
L

)

!L · L!

)

+ log (L!)

= 2 log n!− 2L log
((

n

L

)

!
)

− log (L!)

≈ 2n log n− 2L ·

n

L
log
(

n

L

)

− L log (L)

= 2n log n− 2n log
(

n

L

)

− L log (L) = (2n− L) log(L).

If we choose L = n
logn we get

N = (2n−
n

logn
) log

(

n

logn

)

,

and for n large enough

lim
n→∞

N

2n logn
= 1.

Thus this mapping will be asymptotically optimal. We
finally and briefly note that the functions F1 and F2 have
efficient implementations. This can be done by different
methods, see for example [1] and chapter 5.1 in [3].

IV. REPRESENTATIONS TRADING OFF SNEAK PATHS

AND POWER CONSUMPTION

One way to eliminate memristor sneak paths without
resorting to any information-theoretic tools is by ground-
ing all rows except the one being read. The problem with
grounding all other rows is that it increases the power
consumption of the read operation due to lower equivalent
resistance through which flows the measurement current.
Without information theoretic data representations, this
suggests a tradeoff between power consumption (from
grounded rows) and read inaccuracy/incorrectness (from
sneak paths). Alternatively, we propose to replace the
power-correctness tradeoff with a power-density one, by
employing an information-theoretic data representation.
The key idea is to specify how many of the rows will
be grounded in a read operation, and ensure that no
sneak paths exist in the part of the array remaining
“active” in the non-grounded rows. By doing that, we
can control the power consumption of the read operation
while guaranteeing read accuracy. Since many of the
cells will be deactivated in grounded rows, maintaining
sneak-path-free reads will be possible with good storage
rates. There are many ways to obtain sneak-path-free
sub-arrays, each resulting in an interesting information-
theoretic problem.

A. Grounding based upon fixed subsets

In this section we study the capacity assuming the array
rows are divided into disjoint subsets, and grounding all
rows outside the subset of the read row. We will show
that when the subset size is a constant, the capacity does
no longer go to zero as in the full-array.

Assume the array size is m × n and let b be some
positive integer which is a divisor of m. The m rows are
divided into m/b disjoint subsets of consecutive rows.
Then, any of the m/b subarrays of size b × n will have
to satisfy the isolated zero-rectangle constraint. Since
all these subarrays are disjoint and thus independent we
conclude that the number of arrays will be N(b, n)m/b.
Let us define the capacity of this constraint by C1(b).
Then, we get

C1(b) = lim
m,n→∞

log
(

N(b, n)m/b
)

mn
= lim

n→∞

log (N(b, n))

bn
.

The proof of the next lemma is omitted due to the lack
of space.

Lemma 7. For any b = o(n) and n large enough the
following holds

(b+ 1)n − bn+1
6 N(b, n) 6 (b + 1)!S(n+ 1, b+ 1).

Now we are ready to calculate the capacity C1(b) for
fixed values of b.

Lemma 8. For any fixed b, C1(b) =
log(b+1)

b .

Proof: According to Lemma 7

lim
n→∞

log(N(b, n))

bn
> lim

n→∞

log
(

(b+ 1)n − bn+1
)

bn

= lim
n→∞

log
(

(b+ 1)n
(

1− b
(

b
b+1

)n))

bn

=
log(b+ 1)

b
+ lim

n→∞

log
(

1− b
(

b
b+1

)n)

bn
=

log(b+ 1)

b
.

To prove the opposite inequality, again by Lemma 7
we get

lim
n→∞

log(N(b, n))

bn
6 lim

n→∞

log((b+ 1)!S(n+ 1, b+ 1))

bn

6 lim
n→∞

log((b+ 1)n+1)

bn
=

log(b+ 1)

b
.

Finally, we note that in a very similar way it is possible
to show that if b = o(n) then

lim
b → ∞
b = o(n)

C1(b)
log(b+1)

b

= 1.

B. Grounding sets based upon the read row

In this section we study the capacity assuming all rows
are grounded outside a subset of rows which depends
upon the read row. In particular, we study the case where
all rows outside a subset of odd size centered at the
read row are grounded. It turns out that a sufficient (but
not necessary) condition to have a sneak-path free array
in these case is that each column satisfies some run-
length limited (RLL) [2] constraint, which depends on
the number of ungrounded rows.

Under this model, we say that there is a b-sneak-path,
where b is odd, affecting the cell in position (i, j) if ai,j =
0 and there is a path as defined in Definition 1 which
can be confined between the (i − b−1

2)-th row and the

(i + b−1
2)-th row. That is, for some k > 1, there exist

2k positive integers max{i − b−1
2 , 1} 6 r1, . . . , rk 6

min{i+ b−1
2 ,m}, 1 6 c1, . . . , ck 6 n such that

ai,c1=ar1,c1=ar1,c2= · · · =ark−1,ck=ark,ck=ark,j =1.

Thus, we say that an array satisfies the b-sneak path
constraint if it has no b-sneak paths.

For any odd b > 1, we denote by N2(m,n; b) the
number of arrays that satisfy the b-sneak-path constraint
and we denote the capacity of this constraint by C2(b),
so

C2(b) = lim
m,n→∞

log (N2(m,n; b))

mn
.

2013 IEEE International Symposium on Information Theory

159

Furthermore, we say that an array has a b-isolated
zero-rectangle if there are four positive integers i1 6= i2,
j1 6= j2, and |i2 − i1| 6 b− 1, such that ai1,j1 + ai1,j2 +
ai2,j1 + ai2,j2 = 3. An array A satisfies the b-isolated
zero-rectangle constraint if it has no b-isolated zero-
rectangles and then it is called a b-isolated zero-rectangle
free array.

Before we proceed, let us recall the one dimensional
RLL constraint. We say that a binary sequence satisfies
the (d, k) RLL constraint if the number of zeros between
every two consecutive ones is at least d and at most k.
The capacity of the one dimensional (d, k) RLL constraint
is denoted by Cd,k. As was shown in Theorem 3, it is
possible to show the following.

Lemma 9. The b-sneak path constraint and the b+1
2 -

isolated zero-rectangle constraint are equivalent.

Lemma 10. For any odd b, C2(b) > C b−1

2
,∞.

Proof: This result follows from the observation that
if every column satisfies the (b−1

2 ,∞) RLL constraint
then necessarily there are no pairs of ones in the same
column at distance less than b−1

2 rows. In particular, there

is no rectangle confined to b+1
2 rows with an isolated zero.

The reverse inequality on C2(b) is proved in the next
lemma.

Lemma 11. For any odd b, C2(b) 6 C b−1

2
,∞.

Proof: Let Bm,n be the number of m × n arrays

where every column satisfies the (b−1
2 ,∞) RLL con-

straint.

Let A be a b-sneak-path-free array. According to
Lemma 9, A is a (b+1

2)-isolated zero-rectangle free

array. Thus, as in the proof of Lemma 4, in every b+1
2

consecutive rows of A, every two rows are either the same
or their ones are located at disjoint locations.

Let us define a mapping Fd : {0, 1}m×n → {0, 1}m×n,
which transfers an array A to Fd(A) as follows. Starting
the first d rows of A, if there are identical rows among
these d rows, then the first row remains the same and the
subsequent identical rows are replaced with all-zero rows.
Then the same operation is performed on the new array
with the next window of d rows, between the second and
(d+ 1)-th row, and so on until reaching the last window
consisting of the last d rows.

Let A′ be the array resulting under this mapping with
d = b+1

2 on the array A, that is A′ = F b+1

2

(A). The

array A′ holds the property that every column satisfies
the (b−1

2 ,∞) RLL constraint.

We note that this mapping is many to one, as there
can be several b-sneak-path-free arrays A which will be
mapped to the same array A′. Given an array A′ we can
bound the number of arrays A that are mapped to it.
Assuming the array A′ has x zero rows, then each row can
be identical to any of the b−1

2 rows above it, or originally
all-zero. Since there are m rows in the array, we can use

a loose upper bound here (which will be sufficient for our
goal), and say that at most mm arrays will be mapped to
the array A′. Therefore, we get the following relation

N2(m,n; b) 6 mm · Bm,n.

Now we conclude that

C2(b) = lim
m,n→∞

logN2(m,n; b)

mn
6 lim

m,n→∞

log(mm ·Bm,n)

mn

= lim
m,n→∞

m logm+ logBm,n

mn

= lim
m,n→∞

logBm,n

mn
= C b−1

2
,∞.

From Lemma 10 and Lemma 11, we get that

C2(b) = C b−1

2
,∞.

It turns out that the symmetric grounding set method
is better than the one based upon fixed subsets. In other
words, we can prove the inequality C2(b) > C1(b). This
can be done by using the property from Problem 3.3 in [5]

that for every positive integers d,m, Cd,∞ >
log(m+1)

d+m .

To conclude, we compare between the capacities of the
three approaches we introduced here

b C1(b) =
log(b+1)

b C2(b) = C b−1

2
,∞

2 0.792 -
3 0.667 0.694
4 0.580 -
5 0.517 0.551
6 0.468 -
7 0.423 0.465

V. ACKNOWLEDGMENTS

This work was partially supported by the ISEF Fellow-
ship, an Intel ICRI-CI award, and an EU Marie Curie CIG
grant. The authors thank Ron M. Roth for pointing ref-
erence [7] to their attention, and an anonymous reviewer
who found a flaw in the original proof of Lemma 11.

REFERENCES

[1] T.M. Cover, “Enumerative source encoding,” IEEE Trans. Inf.
Theory, vol. 19, no. 1, pp. 73–77, January 1973.

[2] K.S. Immink. Coding techniques for digital recorders. Prentice-
Hall, College Div., 1991.

[3] D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley, 1998.

[4] E. Ordentlich and R.M. Roth. Low complexity two-dimensional
weight-constrained codes. IEEE Transactions on Information
Theory, 58(6):3892–3899, 2012.

[5] R.M. Roth, Coding for Storage Systems. Technion Lecture Notes.
[6] S. Shin, K. Kim, and S. Kang. Analysis of passive mem-

ristive devices array: data-dependent statistical model and self-
adaptable sense resistance for RRAMs. Proceedings of the IEEE,
100(6):2021–2032, 2012.

[7] P.P. Sotiriadis, “Information capacity of nanowire crossbar switch-
ing networks,” IEEE Transactions on Information Theory, vol. 52,
no. 7, pp. 3019–3032, July 2006.

[8] D. Strukov, G. Snider, D. Stewart, and S. Williams, “The missing
memristor found,” Nature, vol.,453, pp. 80–83, May 2008.

[9] P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart,
J. Straznicky, and S. Williams, “Writing to and reading
from a nano-scale crossbar memory based on memristors,”
Nanotechnology, vol. 20, October 2009.

2013 IEEE International Symposium on Information Theory

160

