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(57) ABSTRACT 
Preferred embodiments of the invention provide WOM cod 
ing methods and electronic devices With error correcting 
codes that provide single, double and triple error correction. 
Preferred codes of the invention also the following property: 
if the code corrects tWo/three errors it has tWo/three parts of 
redundancy bits. For double error correction, if only one part 
of the redundancy bit has no errors then it is possible to correct 
one error. For triple error correction, if only one/tWo parts of 
the redundancy bits have no errors then it is possible to correct 
one/tWo errors. Preferred methods of the invention use codes 
that correct/ detect a single, tWo and three cell-erasures. A 
preferred method of the invention applies a code that has three 
roots, ah a2, a3, each of Which is a primitive element and 
Where every pair of roots generates a double error correcting 
code. Methods of the invention further provide and utilize 
codes utilitiZing a triple error correcting WOM code that can 
correct an arbitrary number of errors. 
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STRONG SINGLE AND MULTIPLE ERROR 
CORRECTING WOM CODES, CODING 

METHODS AND DEVICES 

PRIORITY CLAIM AND REFERENCE TO 
RELATED APPLICATION 

[0001] The application claims priority under 35 U.S.C. 
§119 and all applicable treaties and statutes from prior pro 
visional application Ser. No. 61/353,418, WhichWas ?led Jun. 
10, 2010, and is incorporated by reference herein. 

FIELD 

[0002] A ?eld of the invention is data coding and compres 
sion, and particularly Error Correcting Code schemes. 
Embodiments of the invention provide WOM (Write Once 
Memory) error correcting coding methods and devices. 

BACKGROUND 

[0003] A Write Once Memory (WOM) is a storage medium 
With binary memory elements, called cells, that can change 
from the Zero state to the one state only once, except, in some 
types of memory, upon a block erase. WOM codes Were 
originally designed for memories that consist of binary 
memory elements that could physically only be changed from 
a Zero state to a one state. Examples of such memories are 
punch cards and optical disks. More recently, WOM codes 
have been designed for general usage in different types of 
memories, including ?ash memories. See, e.g., A. Jiang, “On 
the Generalization of Error-Correcting WOM codes,” in Proc. 
IEEE Int. Symp. Inform. Theory, pp. 1391-1395, Nice, 
France (2007); A. J iang and J. Bruck, “Joint coding for ?ash 
memory storage,” in Proc. IEEE Int. Symp. Inform. Theory, 
pp. 1741-1745, Toronto, Canada, (July 2008); H. Mandavifar, 
P. H. Siegel, A. Vardy, J. K. Wolf, and E. Yaakobi, “A Nearly 
Optimal Construction of Flash Codes,” in Proc. IEEE Int. 
Symp. Inform. Theory, pp. 1239-1243, Seoul, Korea, (July 
2009). 
[0004] WOM codes provide advantages in limiting the 
Write-stress on multiple Write memories to increase lifetime. 
The atomic memory element in ?ash memories is a ?oating 
gate cell. The cell is electrically charged With electrons and 
can have multiple levels corresponding to a different numbers 
of electrons in the cell. A typical cell is a binary cell that takes 
on tWo levels. A group of cells, typically 220 cells, constitutes 
of a block. While it is possible to increase an individual cell 
level in the block, it is impossible to reduce its level, unless the 
entire block is erased and then reprogrammed. Considering 
roWs With an “all-Zero” state, information is recorded in the 
blocks on a roW-by-roW basis. HoWever, in order to reWrite a 
roW in a previously Written block, the entire block must ?rst 
be erased, returning it to the “all-Zero” state. See, e. g., “Algo 
rithms and data structures for ?ash memories,” ACM Com 
puting Surveys, vol. 37, pp. 138-163, (June 2005). This block 
erase operation introduces a signi?cant delay and also has a 
detrimental effect on the lifetime of the memory. WOM codes 
offer a Way to reduce the number of such block erasures. 

[0005] WOM codes, introduced by Rivest and Shamir, per 
mit the reuse of a WOM by taking into account the location of 
cells that have already been changed to the one state. See, R. 
L. Rivest and A. Shamir, “HoW to Reuse a Write-Once 
Memory,” Inform. and Control, vol. 55, nos. 1-3, pp. 1-19, 
(1982). A WOM-Code CW[n,k,t] is a coding scheme for stor 
ing k information bits in n cells t times. At each Write, the state 
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of each cell can be changed, provided that the cell is changed 
from the Zero state to the one state. The WOM-Rate of CW, 
de?ned to be Rt(C W):kt/n, indicates the total amount of infor 
mation that is possible to store in a cell in t Writes. 

[0006] TWo constructions of practical error correcting 
WOM codes Were ?rst given by Zémor and Cohen. See, G. 
Zémor and G. D. Cohen, “Error-correcting WOM codes,” 
IEEE Trans. Inform. Theory, vol. 37, no. 3, pp. 730-734, (May 
1991). Both constructions correct a single cell-error during 
the Writes. The ?rst construction, based on a double error 
correcting BCH code, enables one to Write k bits using n:2k_l 
cells tzn/ 15.42 times. The second construction, Which uses 
the same number of cells, is based on a triple error correcting 
BCH code and stores 2k bits tzn/26.9 times. 
[0007] A simple error correcting WOM code replicates 
each of n cells 2e+1 times to correct e or feWer errors. The 
error correction reduces the rate of the general WOM code by 
2e+ 1, thus, if the rate Were Rt(C W):ken for the code, then the 
error corrected rate is Rt(C W)/(2e+1):kt/n(2e+1). 

SUMMARY OF THE INVENTION 

[0008] Preferred embodiments of the invention provide 
WOM coding methods and electronic devices With error cor 
recting codes that provide single, double and triple error 
correction. Preferred codes of the invention also the folloWing 
property: if the code corrects tWo/three errors it has tWo/three 
parts of redundancy bits. For double error correction, if only 
one part of the redundancy bit has no errors then it is possible 
to correct one error. For triple error correction, if only one/tWo 
parts of the redundancy bits have no errors then it is possible 
to correct one/tWo errors. Preferred methods of the invention 
use codes that correct/detect a single, tWo and three cell 
erasures. A preferred method of the invention applies a code 
that has three roots, (x1, (x2, (x3, each of Which is a primitive 
element and Where every pair of roots generates a double error 
correcting code. Methods of the invention further provide and 
utiliZe codes utilitiZing a triple error correcting WOM code 
that can correct an arbitrary number of errors. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[0009] Embodiments of the invention provide error correct 
ing WOM codes With improved WOM-rates. WOM error 
correcting coding methods and devices of the invention have 
application to data communication and data storage devices 
including, for example, ?ash memory devices. Methods and 
devices of the invention can also be applied to WOM devices 
or devices that use WOM coding schemes for better perfor 
mance, e. g., Write-e?icient memory methods that enhance the 
lifetime of so-called permanent memory. 
[0010] Preferred embodiments of the invention provide 
WOM coding methods and electronic devices With error cor 
recting codes that provide single, double and triple error 
correction. Preferred codes of the invention also the folloWing 
property: if the code corrects tWo/three errors it has tWo/three 
parts of redundancy bits. For double error correction, if only 
one part of the redundancy bit has no errors then it is possible 
to correct one error. For triple error correction, if only one/tWo 
parts of the redundancy bits have no errors then it is possible 
to correct one/tWo errors. Preferred methods of the invention 
use codes that correct/detect a single, tWo and three cell 
erasures. A preferred method of the invention applies a code 
that has three roots, (x1, (x2, (x3, each of Which is a primitive 
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element and Where every pair of roots generates a double error 
correcting code. Methods of the invention further provide and 
utilize codes utilitiZing a triple error correcting WOM code 
that can correct an arbitrary number of errors. 
[0011] Coding and devices of a ?rst preferred embodiment 
provide a coding construction that can be adjusted for either 
single, double, or triple error correction. A preferred double 
error correction code of the ?rst embodiment has an informa 
tion part and tWo parts of redundancy bits such that: 1) If both 
parts of the redundancy bits have no errors then it is possible 
to correct tWo errors in the information bits; and 2) If one part 
of the redundancy bits has an error then it is possible to correct 
a single error in the information bits using the other part of the 
redundancy bits. 
[0012] Coding and devices of a second preferred embodi 
ment provide triple-error correction. A preferred triple-error 
correction code of the second embodiment has an information 
part and three parts of redundancy bits such that: 1) If none of 
the redundancy bit parts has errors then it is possible to correct 
three errors in the information bits; 2) If one of the redun 
dancy bits parts has errors then it is possible to correct tWo 
errors in the information bits; and 3) If tWo of the redundancy 
bits parts have errors then it is possible to correct one error in 
the information bit. 
[0013] Preferred embodiments of the invention Will noW be 
discussed. The folloWing de?nitions Will be used in discuss 
ing the preferred embodiments: 

DEFINITIONS 

[0014] l)An [n, k, t] WOM code CW(eCW, T7 CW) consists of 
n cells and is de?ned by its encoding and decoding maps, eCW 
and 10 CW, respectively. The WOM code CW guarantees any t 
Writes of a k-bit data vector v Without producing the block 
erasure symbol E. The rate of the WOM code CWis de?ned as 
RIkt/n; 
[0015] 2) An [n, k, t] WOM code that can correct e errors is 
an [n, k, t] e-error correcting WOM code; 
[0016] 3) An [n, k, t] WOM code that can correct e errors is 
an [n, k, t] e-error detecting WOM code, With a decoding map 
extended to DCW be: {0,1}”Q, {0, l}k U Where F is an 
error detection ?ag. 
[0017] In the discussion of preferred embodiments, there 
are error correcting and error detecting codes, the former 
providing the ability to detect and the latter the ability to 
correct errors. For simplicity of discussion, the example 
embodiments Will assume the case Where the same number of 
bits is Written at each Write. Artisans Will appreciate that the 
constructions can be modi?ed to support the case Where a 
different number of bits is Written on each Write. In the dis 
cussion, it is also assumed that, if after decoding on the i-th 
Write, a cell Which is in state Zero is erroneous, this error can 
be corrected (at least theoretically) prior to the next Write by 
changing the state of this cell to a one. HoWever, if after 
decoding on the i-th Write, a cell Which is in state one is 
erroneous, the state of this cell cannot be changed prior to the 
next Write. In this case, hoWever, it is assumed that on the 
(i+l)-st Write the encoder knoWs that the cell’s true state is a 
Zero. Thus, there is no problem if the encoder Wants to Write 
a one in this cell. HoWever, if the encoder Wants to Write a Zero 
in this cell, then the error Which Was corrected on the i-th Write 
Will also occur on the (i+l)-st Write because in this case it is 
not possible to physically change the cell’s state. Stating that 
WOM code is an e-error correcting code means that the code 
Will correct e or a feWer errors on each Write but some the 
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errors Which Were corrected on one Write could appear on 

subsequent Writes. This information can be used in decoding 
but the decoder discussed in preferred embodiments does not 
do so for simplicity of explanation. It is also assumed that that 
there are no reading errors, that is, the correct state of a cell is 
alWays read. 

1. DEFINITIONS 

[0018] The memory elements, called cells, have tWo states: 
Zero and one. At the beginning, all the cells are in their Zero 
state. A programming operation changes the state of a cell 
from Zero to one. This operation is irreversible in the sense 
that one cannot change the cell state from one to Zero unless 
the entire memory is ?rst erased. The memory-state vectors 
are all the binary vectors of length n, (0,1)”. The data vectors 
are the set of all binary vectors of length k, (0,1)’? Any WOM 
code CWis speci?ed by its encoding map ECW and decoding 
map DCW. The decoding map assigns to each memory-state 
vector ce{0, 1}” its corresponding data vector VIDC (c)e{0, 
1}]? The encoding map ECW:{0,l}k><{0,l}”—>{O,IT”U{E} 
indicates for each neW data vector ve{0,l }k and memory-state 
vector ce{0,l }”, a neW memory-state vector c':ECW(v,c) such 
that DCW(c')q/, and cléc'i, for all léién. In case such a 
c'e(0,l)” does not exist, the value of the encoding map is 

ECW(v,c):E. 
[0019] The error detecting and error correcting WOM 
codes have the folloWing generic structure: 
[0020] 1. Assume that there exists an [n,k,t] WOM code 
CW(ECW, DCW). Its n cells are denoted by c:(co, . . . , cn_l) and 
called the information cells. This original code CW cannot 
correct errors. 

[0021] 2. The constructed code consists of the n informa 
tion cells c, and r additional cells, called the redundancy cells, 
and denoted by p:(po, . . . , p,_1). The redundancy cells enable 
the decoder to correct cell-errors. This provides an [n+r,k,t] 
WOM code With some error correction/ detection capabilities. 

[0022] 2. SINGLE-ERROR-DETECTING WOM-CODES 
[0023] Embodiments include single-error detecting WOM 
codes. Let CW(ECW, DCW) be an [n,k,t] WOM code, and its 
cells, called the information cells, are denoted by c:(co, . . . , 

cn_l). We construct an [n+t,k,t] single-error detecting WOM 
code, denoted by CSED(ECSED, DCSED). 
[0024] In this construction there are t redundancy cells, 
denoted by p:(po, p 1, . . .pt_ 1), i.e., the value of r in the general 
structure is t. The code C SED satis?es the folloWing property: 
at each Write, the parity of the t redundancy cells, 

are the same. 

[0025] Theorem 1 
[0026] If CW is an [n,k,t] WOM code, then CSED is an 
[n+t,k,t] single-error detecting WOM code. 
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[0027] Proof: This theorem is proven by showing the cor 
rectness of the encoding and decoding maps. In ECSED the 
encoding map, the new data vector V is encoded in the n 
information cells by the ECW encoding map (c,v). If the parity 
of the information cells is changed, then one of the t redun 
dancy cells is programmed. Since there are initially t redun 
dancy cells in state Zero and each time at most one of them is 
programmed, there is at least one unprogrammed cell at each 
write. 
[0028] In DCSED the decoding map, at most one of the cells is 
in error. If the information cell’s parity is different than the 
redundancy cell’s parity, then the ?ag F is returned to indicate 
a single error detection. Otherwise, the data vector V is simply 
decoded by the DCW decoding map v:(c). 
[0029] This scheme can be applied to all known WOM 
codes. In particular, the next example shows how to adapt the 
scheme to WOM codes which are based on Hamming codes 

[2], [7] 

Example 1 

[0030] In reference [2], a construction of WOM codes, 
based on Hamming codes, is presented. For ki4, the con 
struction gives a [2k—1,k,2k_2+2] WOM code, and for k:2,3 a 
[2k-1,1<,2k-2+1] WOM code. In particular, the [3,2,2] WOM 
code, presented by Rivest and Shamir [16], is a special case of 
this construction for k:2. Later, in [7] the case 1(24 was 
improved and [2k— 1 ,k,5~2k_4+1] WOM codes were presented. 
[0031] For ki4, Zémor showed that it is possible to change 
the construction such that, excluding the ?rst write, the num 
ber of programmed cells at each write is even [24]. Therefore, 
the parity bit changes its values at most once. Thus, one 
redundancy cell is suf?cient for the construction and a [2k,k, 
5~2k_4+1] single-error detecting code is provided. A similar 
construction to this code with the same parameters was pre 
sented by Zémor in [24]. 
[0032] For k:2,3, the construction is modi?ed. At each 
write, the redundancy cells’ parity is the complement of the 
information cells’ parity. Then, at most 2k_2?—1 cells are 
suf?cient and thus a [2k+2k_2—1,k,2k_2+1] single-error 
detecting code exists. The following table demonstrates the 
construction for the [4,2,2] single-error detecting WOM 
code. The bold font represents the bit in the redundancy cell. 
A similar table can be built for the [9,3,3] single-error detect 
ing WOM code. 

Bits Value First Write Second Write 

00 0001 1110 
01 0010 1101 
10 0100 1011 
11 1000 0111 

3. SINGLE-ERROR-CORRECTING WOM-CODES 

[0033] In order to construct single-error correcting WOM 
codes, we start as in Section 2 with an [n,k,t] WOM code, 
CW(ECW, DCW). Its information cells are C:(co, . . . , cn_l) and 
we add r redundancy cells, p:(po, . . . , p,_1), that form a word 

in C WD(ECW, DCWD), an [r, [lo g2(n+ 1 )] ,t] single-error detecting 
WOM code. Then, we construct an [n+r,k,t] single-error cor 
recting WOM code, denoted by CSEC(ECSEC, DCSEC), as fol 
lows. 
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[0034] At each write we generate a [log2(n+1)]-bit vector, 
called the syndrome and denoted by s. The syndrome will 
correspond to the redundancy bits of a Hamming code (or a 
shortened Hamming code) of length n, and will make it pos 
sible to locate an information cell in error. 
[0035] Next, and in the following examples, we provide the 
exact speci?cation of the given error correcting WOM codes 
by their encoding and decoding maps. These maps are 
described algorithmically using a pseudo-code notation. In 
this speci?cation we will use the encoding and decoding 
maps ECW, DCW of the WOM code CWand the encoding and 
decoding maps ECW, DCW of the single-error detecting WOM 
code CWD. We let 0t be a primitive element in the extension 
?eld GFQVOgWDI). 
[0036] Encoding map ECSEC: The input is the memory-state 
vector (c,p) and the new k-bit data vector v. The output is 
either a new memory-state vector (c',p') or the erasure symbol 
E. 

[0037] In the encoding map, EC the data vector v is 
encoded in the information cells c (line 1). If writing does not 
succeed, the symbol E is returned (line 2). Otherwise, the 
syndrome s of the new n information cells is calculated (line 
3). Then, s is encoded in the redundancy cells using the 
encoding map ECWD(p,s) (line 4). If this writing fails, the 
symbol E is returned (line 5); otherwise, the new memory 
state vector is returned (line 6). Note that since the encoding 
map ECW can write t messages of k-bits each and the encoding 
map E CWD can write t times the [lo g2 (n+ 1 )] -bit syndrome s, the 
encoding map ECSEC also can write k-bits t times. 
[0038] Decoding map DCSEC: The input is the memory-state 
vector (c',p'). The output is the decoded k-bit data vector v. 

[0039] The syndrome s" is decoded by applying the decod 
ing map DCWD on the redundancy cells p' (line 1). The code 
CWD is a single-error detecting WOM code and hence by its 
decoding map DCWD it is possible to determine if there is an 
error in one of the r redundancy cells (line 2). We distinguish 
between the following two cases: 
[0040] 1. If one of the redundancy cells is in error, i.e. the 
condition in line 2 holds, then there is no error in the infor 
mation cells and v is decoded by the decoding map DCW (line 
3). 
[0041] 2. If there is no error in the redundancy cells, then s" 
is the correct value of the syndrome s. The received syndrome 
s' from the received n information cells is 
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1 

1:0 

(line 4). If s':s" (line 5), then there is no error in the n 
information cells and it is possible to decode the correct value 
of the data vector V (line 6). Otherwise, if the i-th cell is in 
error, then S'+S":(Xi. The calculation of loga(s'+s") returns the 
value i such that (xi:s'+s" (line 7). This identi?es the errone 
ous cell and again can decode the data vector V (line 8). 
[0042] Thus We have proved the following theorem. 
[0043] Theorem 2 
[0044] lfCWis an [n,k,t] WOM code, CWD is an [r, [log2(n+ 
1)] ,t] single-error detecting WOM code, then C SEC is an [n+r, 
k,t] single-error correcting WOM code. 
[0045] The next example demonstrates hoW to use this con 
struction to build speci?c single-error correcting WOM 
codes. 

Example 2 

[0046] As in Example 1, the code CW is chosen to be the 
[2k-1,1<,5-2k-4+1] WOM code for 1(24 from [7]. Therefore, 
n:2k—1, and [log2(n+1)]:k, so We can use the [2k,k,5 ~2k_4+ 1] 
single-error detecting WOM code from Example 1. The 
resulting [2~2k—1,k,5~2k_4+1] single-error correcting WOM 
code has rate 

Which is an improvement upon the constructions in [23] and 
the simple construction presented above. 

4. DOUBLE-ERROR-CORRECTING 
WOM-CODES 

[0047] The double-error correcting WOM codes construc 
tion is very similar to the single-error correcting case in 
Section 3, Where the same WOM codes CW, CWD are used. 
There are 2r redundancy cells, partitioned into tWo r-cell 
groups, p1:(p0s Pt, - - - , PM) and P2:(Pw Po - - - , P221) The 

redundancy groups p 1 and p2 store [log2(n+1)] -bit syndrome 
vectors s1 and s2, respectively. The tWo syndromes corre 
spond to the tWo roots 0t,0t3 of a double-error correcting BCH 
code, denoted by C2_BCH, Where 0t is a primitive element in 
the ?eld GF(2[Z°g2(”+l)l). In this construction, [log2(n+1)] is 
assumed to be an odd integer. The code is denoted by CDEC 

(ECDEC’ DCDEC) 
[0048] Encoding Map ECDEC: 
[0049] The input is the memory-state vector (c, pl, p2) and 
the neW k-bit data vector v. The output is either a neW 
memory-state vector (c',p'l,p'2) or the erasure symbol E. 

@kIl-BUJIUH 
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[0050] The neW k-bit data vector v is encoded in the infor 
mation cells using the encoding map ECW (line 1). The success 
of this Writing is then checked (line 2). The tWo syndromes s1, 
s2 are calculated (line 3) and are encoded in the redundancy 
cells (line 4) While checking the Writing success (line 5). If the 
last tWo Writing operations succeed, the encoding map returns 
the neW memory-state vector (line 6). 
[0051] For the decoding map DCDEC, We use the single-error 
correcting WOM code decoding map D CSEC Which receives as 
its input n information cells and r redundancy cells. Note that 
While the code C SEC uses a ?xed primitive element oteGF 
(2[Z°g2(”+1)l), it is possible to use any other primitive element 
in the ?eld GF(2[Z°g2(”+l)l). We slightly modify the input 
arguments of the decoding map DC C such that the primitive 
element is its ?rst parameter. The modi?ed decoding map is 
denoted by D'CSEC. We use the decoding map DCZ’B of the 
double-error correcting BCH code. Its input is the 2 [llog2(n+ 
1)] syndrome bits; its output is the error vector. 
[0052] Decoding Map DCDEC: 
[0053] The input is the memory-state vector (c',p'1, p'2). 
The output is the decoded k-bit data vector v. 

[0054] The tWo syndromes s"l, s"2 are decoded using the 
redundancy cells and the decoding map DCWD (line 1). If s 1 ":F 
(line 2) then there is at least one error in the redundancy cells 
of group pl‘, and at most one error in the information cells c' 
and the second redundancy group p2‘. Therefore, it is possible 
to decode the data vector v by applying the decoding map 
D'CSEC to the cells in c' and p2‘ While taking 0&3 to be the 
primitive element (line 3). Note that since [log2(n+1)] is an 
odd integer, (x3 is also a primitive element in GF(2[Z°g2(”+l)l). 
Similarly, if s"2:F (line 4), then We decode by applying the 
decoding map D'CSEC to the cells c' and p'l, While 0t is the 
primitive element (line 5). 
[0055] If according to the decoding map DCWD, no error is 
decoded in both the redundancy cell groups, then either there 
is no error in all the redundancy cells or there are exactly tWo 
errors in one of the tWo redundancy cell groups. First, the 
syndromes s'l, s'2 from the received n information cells are 
calculated (line 6). Then, We consider the folloWing tWo 
cases: 

[0056] 1.lfs'1:s"l or s'2:s"2 (line 7), then necessarily there 
is no error in the n information cells and the k-bit data vector 
is calculated and returned (line 8). (This is true since if there 
is at least one error in the information cells then there is no 
error in the redundancy cells and neither of these equalities 
holds, Which is a contradiction.) 
[0057] 2. If s'fes"l or S'2#S"2 (line 9) then at least one error 
occurred in the n information cells and no errors in the redun 
dancy cells. The error vector is found by applying the decod 
ing algorithm of the tWo-error correcting BCH code, DCZ’BCH, 
to s' 1 +s" 1 and s'2+s"2 (line 9). Then, We knoW the correct value 
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of the n information cells and it is again possible to success 
fully decode the data vector V (line 10). We conclude this 
construction in the following theorem. 
[0058] Theorem 3 
[0059] IfCWis an [n,k,t] WOM code, CWD is an [r, [log2(n+ 
1)] ,t] single-error detecting WOM code, and [lo g2(n+ l )] is an 
odd integer, then CDEC is an [n+2r,k,t] double-error correct 
ing WOM code. 
[0060] The construction does not Work if [log2(n+l)] is an 
even integer since 03 is no longer a primitive element in the 
?eld GF(2[Z°g2(”+l)l), and thus the decoding map in line 3 
cannot succeed. Clearly, it is possible to modify it by Working 
over the ?eld GFQHUOgXW'Dl) and storing syndromes of 
l+[log2(n+ l )] bits. Next, We shoW a modi?cation in case that 
[log2(n+2)] is an even integer by adding t more cells. 
[0061] Assume that [log2(n+2)] is an even integer. The last 
construction is modi?ed and We present its differences in the 
encoding and decoding maps. The main modi?cations are as 
folloWs: 
[0062] 1. Instead of using the [n,k,t] WOM code CW, an 
[n+t,k,t] single-error detecting WOM code is used and We 
denote it by C' W(ECW, DCW). The t additional redundancy cells 
are denoted by q:(qo, . . . , qH). 

[0063] 2. Instead of using the root (x3 We use the root 0P1. 
[0064] 3. The syndromes s1 and s2 are calculated according 
to the neW roots applied to the information cells c and their 
parity value, Which is stored in the neW redundancy cells q. 
[0065] The input and output to the encoding map are 
changed accordingly Where the memory-state vector is (c,q, 
pl,p2). In the ?rst and second lines, We use the encoding map 
ECW instead of ECW on the cells (c,q). The syndrome values in 
line 3 and the returned neW memory-state vector in line 6 are 
also changed accordingly. 

[0066] The decoding algorithm is also very similar. Since 
We use the root (X_ 1 and also the value of the t neW redundancy 
cells, lines 3 and 6 are changed as folloWs. Note that 0C1 is 
also a primitive element and therefore the decoding map in 
line 3 succeeds. 

[0067] If the decoder reaches line 9, then there is at least one 
error in the n information cells c' and t redundancy cells q'. 
The main difference in the decoding is that at this line We 
necessarily need to knoW if there is one or tWo cells in error 
among the n information cells c' andt redundancy cells q'. If 
there is a single error, that is, the parity of the it information 
cells and the parity of the t additional redundancy cells are not 
the same (line 9), then We can decode the data vectorusing the 
decoding map D'CSECWIIh the root 0t since there is at most one 
error in the information cells and no error in the redundancy 
cells p'l (line 10). OtherWise, there are exactly tWo errors in 
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the it information cells and t redundancy cells. The values of 
e 1 and e2 Which are calculated in line 11 are of the form 

[0068] for some 0§i,j§n, i#j, and 

[0069] Therefore, the values of i and j, i.e. the error vector, 
can be found by applying the decoding procedure DCZ’BCH to el 
and el(e12+e1e2_l) (line 12). Next, the data vector can be 
successfully decoded (line 13). Note that the error vector in 
line 12 consists of n+1 bits While for the decoding map in line 
13 We need only its ?rst it bits. 

[0070] To conclude, We state the folloWing theorem. 

[0071] Theorem 4 

[0072] Let CW be an [n,k,t] WOM code and CWD be an 
[r,[log2(n+2)],t] single-error detecting WOM code. Suppose 
[log2(n+2)] is an even integer. Then there exists an [n+2r+t, 
k,t] double-error correcting WOM code. 

5. TRIPLE-ERROR CORRECTING WOM-CODES 

[0073] From the previous sections We might think that a 
general scheme to construct an e-error correcting WOM code 
is to combine an existing WOM code and a cyclic e-error 
correcting code, Where the latter code is de?ned by e roots (x1, 
. . . , (xe. HoWever, not every e-error correcting code Would 

Work this scheme. For example, in the double-error correcting 
construction in Section 4, the BCH code With roots 0t and 0&3 
cannot Work if [log2(n+l)] is an even integer. This results 
from the fact that (x3 is not a primitive element and hence the 
code generated only by (x3 is not a single-error correcting 
code. For arbitrary e, if the cyclic e-error correcting code is 
de?ned by e roots, then a necessary but not suf?cient condi 
tion for this scheme to Work is that every subset of kée roots 
generates a cyclic k-error correcting code. We state this prop 
erty in the folloWing de?nition. 
[0074] De?nition. Let n be an integer and (x1, . . . , (Xe be e 

different elements in the ?eld GF(2”). Let the code C((Xl, . . . 
, as) be a cyclic error correcting code of length 2”—l With 
roots (x1, . . . , as. The code C((Xl, . . . , (x8) is called a strong 

e-error correcting code if for every lékée and every set of k 
distinct elements ail, . . . , (Xl-k€{(Xl, . . . , (1.8}, the code C((Xl-l, 

. . . , (xi-k) is a k-error correcting code. 

[0075] Next, We shoW hoW to choose the roots (X1, (x2, (x3 
such that C((Xl, (x2, (x3) is a strong triple-error correcting code. 
For the folloWing discussion, 0t is assumed to be a primitive 
element in GF(2”). The folloWing result Was proved by 
Kasami in [12]. 
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[0076] Theorem 5 
[0077] Reference [12]. Let n be an odd integer and gcd(n, 
k):1. 
[0078] Then, C((X,(X2k+l, 03%") is a cyclic triple-error cor 
recting code. 
[0079] In [1], the authors shoW an alternative proof to the 
last theorem and state the following lemma. 
[0080] Lemma 6 
[0081] Let n be an integer and gcd(n,k):1. Then, C((X,(X2k+ 
1) is a cyclic double-error correcting code. 
[0082] These tWo results imply the folloWing lemma. 
[0083] Lemma 7 
[0084] Let n be an integer such that gcd(n,6):1, and let 

k _ n — 1 

_ T. 

Then, the folloWing properties hold. 
[0085] 1. The codes C(ot), C(ot2k+l), C((XZSkH) are cyclic 
single-error correcting codes. 
[0086] 2. The codes C((X,(X2k+l), C((X,(X23k+l) are cyclic 
double-error correcting codes. 
[0087] 3. The code C((X,(X2k+l, 03%“) is a cyclic triple-error 
correcting code. 
[0088] Proof: 

[0089] 1) Since 

[0090] We knoW that 2k+1 is a divisor of 2”_1—1. Since 
gcd(2”—1, 2”_l—1):1, We conclude that gcd(2”—1, 2k++ 
1. Therefore a2k+l is a primitive element in GF(2”) and 
the code C(ot2 +1) is a cyclic single-error correcting 
code. Since gcd (m, 6):1, it folloWs also that gcd(2”—1, 
23k+1), and therefore the code C((XZSkH) is a cyclic 
single-error correcting code as Well. 

[0091] 2) Since gcd(n,k):1k, the condition of Lemma 6 
holds and the code C(ot,0t2 +1) is a double-error correct 
ing code. Similarly, since gcd (n,):1 and gcd(n,k):1, it 
folloWs that cd(n,3k):1, and again by Lemma 6, the 
code C(ot,0t2 +1) is a double-error correcting code. 

[0092] 3) Since gcd (m, 6):1, n is necessarily an odd 
integer and since gcd(n,k):1 the conditions of Theorem 
5 hold. Therefore, the code C(ot,0t2 +1, 0&2 +1) is a triple 
error correcting code. 

[0093] The code C((X,(X2k+, 033:“) isska strong triple-error 
correcting code. If the code C(ot2 +1, 0&2 +1) is a double-error 
correcting code, the de?nition of an almost perfect nonlinear 
mapping is: 
[0094] De?nition. A mapping f:GF(p”)QGF(p”) is called 
an almost perfect nonlinear (APN) mapping if each equation 

[0095] for a,beGF(p”) and a¢0 has at most tWo solutions in 
GF(p”). If f is anAPN mapping and is of the form f(x)qd then 
f is called an almost perfect nonlinear poWer mapping. 
[0096] The next lemma Was proven in [12]. 
[0097] Lemma 8 
[0098] If n is an odd integer, 
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and gcd(n,k):1 then the mapping f(x)q(22k_2k+1 over GF (2”) is 
an APN mapping. 
[0099] The proof of the next lemma folloWs an outline 
similar to that of the proof of Theorem 1 in [1]. 
[0100] Lemma 9 
[0101] If n,k are integers, gcd(n,6):1 and 

k _ n — 1 

2 , 

then C(0t2k+l, 03%“) is a double-error correcting code. 
[0102] Proof Note ?rst that 0&2 +1 is a primitive element in 
GF(2”) since gcd(2”—2k+1):1, Also, gcd(n,k):1 and n is an 
odd integer, so, according to Lemma 8, f(x)qd is an APN 
poWer mapping, Where d:22k—2k+1. We denote Y:(X2k+l, and 
hence need to prove that C(y,yd) is a double-error correcting 
code, 
[0103] Assume to the contrary that the code is not a double 
error correcting code, Clearly, there are no codeWords of 
Weight one or tWo and hence there exists a codeWord of 
Weight three or four. Assume there exist a codeWord of Weight 
four. Then, there exist four integers such that 

The last tWo equations can be Written as folloWs 

(vil)"+(vi2)":b:(vi3)d+(vi4)d, 
for some a, beGF(2”), and a#0. Hence, the equation 

(x+a)d+xd:b 
has four different yil, yiz, yis, yi“ solutions: This is a contradic 
tion since xd is anAPN mapping, The case of a codeWord of 
Weight three is handled similarly. 
[0105] From Lemma 7 and Lemma 9 We conclude the fol 
loWing theorem. 
[0106] Theorem 10 
[0107] If n,k are integers, gcd(n,6):1, and 

k _ n — 1 

_ T’ 

then C((X,(X2k+l ,0t23k+1) is a strong triple-error correcting code. 
[01 08] We are noW ready to shoW the triple-error correcting 
WOM code construction. Again, We use the WOM codes CW, 
CWD, and assume that gcd([log2(n+1)],6):1 and 0t is a primi 
tive element in GF(2[Z°g2(”+l)l). The strong triple-error cor 
recting is denoted by C3S3Z°”g(EC3S”°”g, Dcsmo’qg). Its roots are 
(XIIG, (x2:0t2 +1, (x3:0t2 + , Where 

k 
2 
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There are 3r+t redundancy cells, divided into four groups: 
[0109] l. The ?rst t cells q:(qo, . . . , qt_l) are used With the 

n information cells to construct an [n+t,k,t] single-error 
detecting WOM code C'W(ECW, DCW). 
[0110] 2. The other three groups pl:(po, . . . ,p,_l), p2:(p,, 

. ,p2,_1), and p3:(p2,, . . .p3,_1) constitutes ofr cells each. 

The i-th group, iIl ,2,3, stores the [log2(n+ 1 )]-bit syndrome sl 
Which corresponds to the root (x1. To conclude, We describe an 
[n+t+3r,k,t] triple-error correcting WOM code, CTEC(ECTEC, 
DCTEC) 
[0111 Encoding Map ECTEC: 
[0112] The input is the memory-state vector and the neW 
k-bit data vector V. The output is either a neW memory-state 
vector (c', q', p'l, p2‘, p3‘) or the erasure symbol E. 

[0113] The neW k-bit data vector V is encoded in the infor 
mation cells c and the ?rst group of the redundancy cells q 
using the encoding map EOW (line 1). If this Writing does not 
succeed the symbol E is returned (line 2). OtherWise, the three 
syndromes s 1 ,s2,s3 are calculated from the n information cells 
(line 3) and are encoded in the last three groups of redundancy 
cells (line 4) While checking their Writing success (line 5). If 
the last three Writing operations succeed, the encoding map 
returns the neW memory-state vector (line 6). 
[0114] In the decoding map, DCTEC, We use the decoding 
map of the double-error correcting WOM code DCDEC. Note 
that in the decoding map DCDEC, instead of using a double 
error correcting BCH code, We can use any other cyclic 
double-error correcting code Which is given by its tWo roots. 
Line 9 in the decoding map DCDEC is modi?ed by substituting 
the decoding map of the neW cyclic double-error correcting 
code. The input to the modi?ed decoding map DCDEC, is the 
tWo roots of the cyclic double-error correcting code, the n 
information cells, and the 2r redundancy cells, corresponding 
to the tWo syndromes of the tWo roots. 

[0115] Decoding Map DCTEC: 
[0116] The input is the memory-state vector (c',q',p1', p2‘, 
p3‘). The output is the decoded data vector V. 
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-continued 

[0117] First, the three syndromes from the last three redun 
dancy cell groups are decoded (line 1). If the decoded syn 
drome s" 1 is the error ?ag F (line 2), then there is at least one 
error in the group p'l. In the information cells c' and redun 
dancy cells p'2, p'3 there are at most tWo errors. Therefore, We 
decode by applying the decoding map D'CDEC to c' and p'2, p'3 
With the roots (x1, (x3 (line 3). The same procedure is applied 
if s"2 or s"3 is the error ?ag F (lines 4-7). Here, We use the 
property of Cf’rmg that every tWo out of its three roots gen 
erate a cyclic double-error correcting code. 

[0118] After line 7, none ofthe syndromes s"l, s"2, s"3 is the 
error ?ag F. Therefore, if there are errors in these redundancy 
cells then the number of errors in each of the three redundancy 
cells groups is even and since there are at mo st three errors, at 
most one group has exactly tWo errors. The received syn 
dromes s'l, s'2, s'3 from the received cells and the differences 
e1, e2,e3 are calculated (lines 8 and 9). If the condition in line 
10 holds, then the cells c' and q' have Zero or tWo errors. In 
both cases, the cells c', p'l, p'2 have at most tWo errors so it is 
possible to decode (line 11). 
[0119] We are left With the case Where the parities of the 
cells c' and q' are not the same. That is, these cells have either 
one or three errors. We address this case in the next lemma. 

[0120] Lemma 11 
[0121] The condition in line 12 holds if and only if there is 
at most a single error in the information cells c'. 

[0122] Proof: If there is at most a single error in the infor 
mation cells c' then at most one of the redundancy cell groups 
p'l, p'2, p'3 has tWo errors, that is, at least tWo ofthese groups 
do not have errors. If there is no error in the ?rst and second 

groups and the i-th information cell c'l. is ink error, then 
e1:0tll:0tl and e2:(X2l:(Xl(2 +1). Therefore, e12 +1:e2. This 
condition clearly holds also if there are no errors in the infor 
mation cells c'. Similarly, if there is no error in p' 1 and p'2 then 

23k+1i ' ' ' I . I 22k—2k+ 
e1 *e3, and ifthere 1s no error in p 2, and p 3 then e2 
1:e3. Therefore, if there is at most a single error in the infor 
mation cells c' then the condition in line 12 holds. 

[0123] NoW assume that there is more than one error in the 
information cells c'. That is, the information cells have tWo or 
three errors and in this case, there is no error in the redun 
dancy cells p'1,p'2,p'3 Assume that the information cells have 
three errors in locations i, j, 1. Then, 

. . . k . 

for 0§1<]<l§n—l some. In this case, e12 +l#e2. Otherwise, 
We get 

€1+OLi+Otj+Otl:0 

el(2k+l)+ai(2k+l)+a/(2k+l)+al(2k+l):0, 
0124 and C 0t 03k“) has a codeWord of Wei t at most 

’ 3k 3k 

four, Which is a contradiction. Similarly, e12 +l#e3 and e22 _ 
2 +l#e3. The case of tWo errors in the information cells is 
handled similarly. Hence, the condition in line 12 does not 
hold. 
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[0125] According to Lemma 11, if the condition in line 12 
holds, then there is at most a single error in the information 
cells c'. At most one ofthe redundancy cell groups p1',p2',p3' 
has errors. Therefore, at least tWo out of the three decoding 
maps in line 13 succeed, and the function maj, Which outputs 
the majority of the three decoded values, returns the correct 
value of V. In line 14, there are at most three errors in the 
information cells and no errors in the redundancy cell groups 
p'l, p'2,p'3,p'4, so it is possible to ?nd the error vector (line 14) 
and decode (line 15). We conclude With the folloWing theo 
rem. 

[0126] Theorem 12 
[0127] IfCWis an [n,k,t] WOM code, CWD is an [r, [log2(n+ 
1)] .t] single-error detecting WOM code, and gcd([log2(n+l) 
],6):l, then CTEC is an [n+3r+t,k,t] triple-error correcting 
WOM code. 

6. MULTIPLE-ERROR CORRECTING 
WOM-CODES 

[0128] An arbitrary number of errors can be corrected With 
an ECC WOM code. A simple scheme to construct an e-error 
correcting WOM code is done by using an existing WOM 
code and replicating each one of its cells 2e+l times. A ?rst 
improvement upon this scheme can be achieved by replicat 
ing each cell only e+l times. Then, instead of using a regular 
WOM code, a single-error correcting WOM code is applied. 
Note that since each cell is replicated e+l times, at most one 
cell in the single-error correcting WOM code Will be errone 
ous and thus its decoding map succeeds. In the rest of the 
section We Will shoW hoW to use similar ideas in order to 
construct better WOM codes that correct an arbitrary speci 
?ed number of errors. 

[0129] Let us ?rst shoW another property of the triple-error 
correcting WOM code studied in Section 6. 
[0130] Lemma 13 
[0131] Let CTEC be an [n+3r+t,k,t] triple-error correcting 
WOM code constructed in Theorem 12. Then the code CTEC 
can correct four erasures. Proof: Assume ?rst that there are no 

erasures in the redundancy cells groups p 1, p2, p3 then We 
knoW the correct value of the syndromes s1, s2, s3 and in the 
information cells c there are at most our erasures. Since the 

code C3mo”g corrects three errors, its minimum distance is at 
least seven and hence it can correct up to six erasures and a 
fortiori four erasures. 

[0132] If each redundancy cell group pl, p2, p3 has at most 
one error, then it is still possible to successfully decode the 
three syndromes since each syndrome is storedusing a single 
error detecting WOM code and then ?nd the erasure cells as 
in the ?rst case. 

[0133] If one of the three redundancy groups has at least 
tWo erasures then in the n information cells and tWo other 
redundancy groups there are at most tWo erasures and again it 
is possible to successfully decode the erasure values. 

[0134] The next theorem con?rms the validity of the ?rst 
construction for an e-error correcting WOM code. 

[0135] Theorem 14 
[0136] Let CTEC be an [n,k,t] triple-error correcting WOM 
code. Then there exists an [[e/2]n,k,t] e-error correcting 
WOM code. 

Proof: Let us denote the cells of the WOM code CTEC by c'O, 
. , c'n_ 1. The constructed e-error correcting WOM code is 

denoted by CeEC and its [e/2]n cells are denoted by cop, . . . , 
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COM/2L1, . . . c . , cn_l W214. We use tWo transfor : l’l—1,05 ' ' , 

mat1ons 1n the validation of the construction. The ?rst trans 
formation 

?{0,1}[e/2l"—>{0,1,?}", 
transforms a memory-state vector of n cells, 

into a memory-state vector of n cells, 

C':(C’o, - - - 160.4), 

by taking the majority of every group of [e/2] cells. That is, 
for all Oéién-l 

and in case of equality in the numbers of ones and Zeros, then 
c' 1:7, the erasure symbol. The second transformation 

transforms a memory-state vector of n cells, 

c’:c’o,. ..,c’,,i1), 

to a memory-state vector of [e/2]n cells, 

c:(coyo, . . . pole/2P1, . . . ,cnilyo, . . . ?ning/21f], 

such that for all Oéién-l and 0§j§[e/2]—l, 

ail/:0’, 
[0137] That is, every cell is replicated [e/2] times. 
[0138] In the encoding map eCEEC, the neW vector data v and 
memory-state vector c of [e/2]n cells are received. Then, the 
neW memory-state vector is updated according to 

[0139] First, a memory-state vector of n cells is generated 
by the transformation f on the memory-state vector of the 
[e/2]n cells, e. Then, the encoding map eC is invoked on the 
memory-state vector f (c) and data vector v. Finally, the neW 
memory-state vector of n cells is transformed back to [e/2]n 
cells to generate the neW memory-state vector. In the decod 
ing map 5p EC the memory-state vector e of [e/2]n cells is the 
input and is decoded according to 81; Bc(f(c)). 
[0140] As in the encoding map, ?rst a memory-state vector 
of n cells is generated from the memory-state vector of [e/2]n 
cells and is the input to the decoding map of the WOM code 
8p TEC. The output data vector v from $7; TEC is the output 
data vector of the decoding map. 
[0141] If there are at most e errors in c then in the memory 
state vector f (c) there are at most three errors and erasures or 

exactly four erasures. Since CTEC is a triple-error correcting 
WOM code it can correct three errors and erasures and 
according to Lemma 13 it can correct four erasures as Well. 
[0142] The next example demonstrates hoW to use the pre 
vious construction in order to construct a four-error correct 
ing WOM code. 

Example 3 
[0143] Let us Start With the [2k-1,1<, 5-2k-4+1] WOM code 
for ki4, and gcd(k,6):l, by GodleWski [7]. First, a strong 
triple-error correcting code exists since We require that gcd 
(k,6):l . A triple-error correcting WOM code is built using the 
[2k,k,5~2k_4—l] single-error detecting WOM code from 
Example 1. This last WOM code is used as the WOM codes 
CWD and C'Win the construction of the triple-error correcting 
WOM codes. Hence, We get a triple-error correcting WOM 
code that stores k bits 5~2k_4+l times using 
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cells. Then, according to Theorem 14 there exists a [8~2k,k, 
5~2k_4+1] four-error correcting WOM code. 
[0144] A construction of multiple-error correcting WOM 
codes, based upon a recursive approach, is described as fol 
loWs. Assume that C is an [n,k,t] WOM code, and assume that 
there exists a linear e-error correcting code of length n and 
redundancy r. Then, the r redundancy bits are recursively 
stored using another e-error correcting WOM code. This pro 
cess can be recursively repeated multiple-times until it is 
necessary to use an e-error correcting WOM code Which can 
be constructed according to Theorem 14. We validate the 
recursive step of this construction in the next theorem and 
then shoW an example of hoW to use the construction. 

[0145] Theorem 15 
[0146] Let Cl be an [n,k,t] WOM code, C2 be a linear 
e-error correcting-code of length n and redundancy r, and C3 
be an [m,r,t] e-error correcting WOM code, then there exists 
an [n+m,k,t] e-error correcting WOM code. 
[0147] Proof: The e-error correcting WOM code We con 
struct has n+m cells Which are partitioned into tWo groups. 
The ?rst group has n cells and is denoted by c:(cl, . . . , c”). 
The second group consists of In cells and is denoted by p:(p 1, 
. . . , pm). 

[0148] In the encoding map the memory-state vector of 
n+m cells, (c, p) and neW data vector v are received. The 
output is a neW memory-state vector (c', p'). The data vector v 
is stored in the ?rst n cells using the encoding map of the 
WOM code C l, 

c’IeCl (c, v). 

[0149] Let H be the parity check matrix of the linear e-error 
correcting code C2. In the next step a syndrome s of r bits is 
calculated using the neW value of the n bits, 

[0150] Then, the syndrome s is stored in the In cells using 
the encoding map of the WOM code C3, 

P ’:Ec3(P,S) 

[0151] In the decoding map, the memory-state vector (c', p') 
is the input and the output is a data vector v of k bits. First, the 
syndrome s of r bits is decoded by applying the decoding map 
of the e-error correcting WOM code C3, 

[0152] The success of this decoding map is guaranteed 
since there are at most e errors inp' and the WOM code C3 can 
correct e errors. Another syndrome is calculated from the n 
cells and the parity check matrix H, 

s’IH-c’. 

[0153] Note that if the memory-state vector Without errors 
is c and e is the error-vector of Weight at most e, i.e. c':c+e, 
then 

[0154] Therefore, the syndrome that corresponds to the 
error vector e is s"+s' and it is possible to ?nd it by applying 
the decoding map of the code C2 to s"+s', 

EID C2(s"+s'). 

[0155] Finally, the data vector v is decoded by applying the 
decoding map of the WOM code C1 to the memory-state 
vector c'+e, 
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[0156] A necessary condition to e?iciently apply this 
scheme recursively is that, r, the number of redundancy bits of 
the e-error correcting is not greater than the number of infor 
mation bits k; otherWise the number of cells in the next step of 
the recursion is greater than the total number of cells n. The 
code constructed in Example 3 cannot be used for just this 
reason. If We start With the [2k—1,k,5~2k_4+1] WOM code for 
k§4,gcd(k,6):1, and then use a four-error correcting-code, 
the number of redundancy bits is roughly 4k and so the 
number of information bits for the next WOM code in the 
recursion is greater than the number of the information bits 
that the WOM code needs to store. The next example shoWs 
another case Where this scheme can outperform the construc 
tion in Theorem 14. 

Example 4 

[0157] In this example We start With the [23,11,3] WOM 
code constructed by Cohen et al. [12]. In order to use this 
WOM code in a larger block of cells, one can simply repeat 
the WOM code in successive groups of 23 cells. For example, 
repeating the code 89 times provides us With a [2047,979,3] 
WOM code. In order to construct a four-error correcting 
WOM code according to the construction in Theorem 14, it is 
necessary to ?rst build a triple-error correcting WOM code. In 
this case n:2047, [log(n+1)]:11, and We Will construct a 
single-error detecting WOM code that stores 11 bits three 
times. This can be done according to Section 3 and the [23, 
11,3] WOM code, so We receive a [26,11,3] single-error 
detecting WOM code. The condition of Theorem 12 holds, 
i.e. gcd(11,6):1, and thus We can construct a [2047+3~26+ 
3:2128,979,3] triple-error correcting WOM code. Finally, by 
applying Theorem 14, We can construct a [4256,979,3] four 
error correcting WOM code. 

[0158] Next, We construct the code according to Theorem 
15. Again, let us start With the [2047,979,3] WOM code and 
use a four-error correcting code of length 2047. Speci?cally, 
We use a four-error correcting BCH code of 4~11:44 redun 
dancy bits, so We need to store 44 bits three times While 
correcting four errors. Therefore, We seek to use Theorem 14 
and hence need to construct ?rst a triple-error correcting 
WOM code Which stores 44 bits three times. Note that noW 
n:92 and [log(n+1)]:7, so a single-error detecting that stores 
seven bits three times is required. Cohen et al. [2] also con 
structed a [7,3,3] WOM code and therefore there exists a 
[14,6,3] WOM code. By simply adding three more cells to 
store one more bit three times We construct a [17,7,3] WOM 
code. The latter WOM code provides us With a [20,7,3] 
single-error detecting WOM code. The condition of Theorem 
12 holds again, gcd(7,6):1, and thus We construct a [92+ 
3~20+3:155,44,3] triple-error correcting WOM code. Next, 
by applying Theorem 14, We can construct a [2~155:310,44, 
3] four-error correcting WOM code. Finally, We get a [2047+ 
310:2357,979,3] four-error correcting WOM code, thereby 
improving upon the ?rst construction. 
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[0182] While speci?c embodiments of the present inven 
tion have been shoWn and described, it should be understood 
that other modi?cations, substitutions and alternatives are 
apparent to one of ordinary skill in the art. Such modi?ca 
tions, substitutions and alternatives can be made Without 
departing from the spirit and scope of the invention, Which 
should be determined from the appended claims. 
[0183] Various features of the invention are set forth in the 
appended claims. 

1. A method for encoding WOM (Write only once) data, the 
method comprising steps of: 

receiving an original data vector that is WOM encoded by 
an arbitrary WOM code; 

determining a set of redundancy data for the data vector; 
forming a neW data vector that is de?ned by the original 

data vector and the redundancy data; 
Writing the neW data vector to memory. 
2. The method of claim 1, further comprising WOM encod 

ing the redundancy data prior to said step of forming a neW 
data vector. 

3. The method of claim 2, Wherein said step of WOM 
encoding comprising WOM encoding using a WOM code 
that it different than the arbitrary WOM code of the original 
data vector. 

4. The method of claim 2, Wherein said forming further 
comprising calculating a syndrome of the neW data vector and 
encoding the syndrome in an encoding map that is used for 
said WOM encoding of the redundancy data. 

5. The method of claim 4, Wherein the syndrome comprises 
a Hamming code or a shortened Hamming code. 

6. The method of claim 2, Wherein the WOM code that is 
used for said WOM encoding of the redundancy date satis?es 
the property that the parity oft redundancy cells ZiIOHpZ. and 
the parity of n information cells in the original data vector 
Zi:O”_lci are the same. 

7. The method of claim 2, Wherein the redundancy data 
comprises 2r redundancy cells, partitioned into tWo r-cell 
groups, P1:(PO, P1, - - - , PM) and P2:(Pw P1, - - - , P221), 

Wherein the redundancy groups p 1 and p2 store [log2(n+1)] 
bit syndrome vectors s1 and s2, respectively, and the tWo 
syndromes correspond to the tWo roots 0t,0t3 of a double-error 
correcting BCH code, denoted by C2_BCH, Where 0t is a primi 
tive element in the ?eld GF(2[Z°g2(”+l)l). 

8. The method of claim 7, Wherein [log2(n+1)] is an odd 
integer. 

9. The method of claim 7, Wherein [log2(n+1)] is an even 
integer and an [n+t,k,t] single-error detecting WOM code is 
used, and the t additional redundancy cells are denoted by 
q:(qO, - - -,qt_1); 

a root 0&3 is substituted by the root 0P1; and 
the syndromes s 1 and s2 are calculated according to the 

roots applied to the information cells c and their parity 
value, Which is stored in the neW redundancy cells. 
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10. The method of claim 2, wherein the redundancy data and there are 3r+t redundancy cells, divided into four groups: 
comprises roots of afouafof +1, 015012 +1, where the ?rst t cells q:(qo, . . . , qt_l) are used With the n 

information cells to construct an [n+t,k,t] single-error 
detecting WOM code CW(ECW, DCW); and 

the Otherthree groups P1:(P0: - - - ,Pr_1), P2:(Pr, - - - 5P2r-l): 

and p3:(p2,, . . . , p3,_l) constitutes r cells each, and the 

i-th group, i:l,2,3, stores the [log2(n+l)] -bit syndrome 
sl- Which corresponds to the root (xi. 

k 
2 

* * * * * 


