
Short Q-ary WOM Codes with Hot/Cold Write

Differentiation

Yuval Cassuto
Technion – Israel Institute of Technology

Electrical Engineering Department

ycassuto@ee.technion.ac.il

Eitan Yaakobi
California Institute of Technology Univ. of California, San Diego

EE Department ECE Department

yaakobi@caltech.edu

Abstract—We construct new WOM codes with practical design
considerations. First the problem of 2 cell q-ary WOM codes
is addressed with a construction that uses lattice tilings. The
resulting codes for arbitrary numbers of input bits are shown
to be within a small additive constant from the capacity. Then
we introduce a new model of WOM codes that support data
bits with different update requirements. Differentiation between
frequently written (hot) bits and rarely written (cold) ones allows
a large number of re-writes while leveling the wear between the
hot and cold input bits.

I. Introduction

Storage media that are constrained to change their physical

stored levels in one direction have inspired a significant body

of work to allow unconstrained writes to such media. The

first work in that area introduced re-write codes for write-once

memories (WOM) [8]. In the WOM model, k input bits are

written t times to n physical cells with q levels, where the cell

levels cannot decrease between writes. The WOM model has

received significant attention recently thanks to its applicability

to the ubiquitous flash storage technology [3], [6]. Alongside

the principal WOM model, other interesting re-write models

have been proposed and studied with considerable success [4],

[5], [10]. The starting point of this work are observations we

make on the challenges of WOM codes with respect to their

usage in realistic storage environments.

1) Redundancy-efficient WOM constructions often have a

different k for each of the t writes. This property is hard

to accommodate in practice.

2) Long WOM codes with little structure mean exponen-

tially growing decoding complexities.

3) The generalization of binary WOM codes to q-ary cells

is not well established yet.

4) The known models assume that all user bits have the same

access characteristics, and therefore may be wasteful in

redundancy.

These challenges are the main motivators to the current work,

which addresses the challenges above as follows.

1) A fixed k number of bits in each of the t writes is sought

by all constructions.

2) A small number (e.g. 2) of q-ary cells are used for the

codes.

3) The codes distinguish between “hot” and “cold” bits in

the number of updates they allow (hot bits are updated

frequently, cold bits are updated rarely).

More concretely, in Section II we study WOM codes with

n = 2 q-ary cells that use lattice tilings to obtain large numbers

This work was supported in part by a European Commission Marie Curie
CIG grant and by the Technion Center for Security Science and Technology

of writes. For a general k these codes are shown to be within

an additive constant from the WOM capacity. We note that

tilings have been proposed for use in re-write codes, but not

for the fixed k WOM model [7]. Then in Section III we

introduce a new model of WOM codes that support data bits

with different update requirements. Frequently updated bits

are assigned to hot input bits that can be updated multiple

times. Rarely updated bits are assigned to cold input bits

that are allowed to be written only once, but at any time

in the write sequence. Several constructions with different

parameters show that differentiation between hot and cold bits

can significantly improve the re-write capabilities of the code.

II. WOM Codes with Two Cells

As a preparation to discuss WOM codes with two cells

(n = 2), we start with the simple case of re-writing using

one cell (n = 1). When there is only one cell, any new value

of the k input bits has to result in a distinct level increment

of the cell between 0 and 2k − 1. Therefore, it is clear that the

number of writes that can be guaranteed with a single cell is

t = ⌊(q−1)/(2k−1)⌋, and no greater. The special case of k = 1

gives t = q − 1 writes by incrementing the level by 1 each

time the input bit changes 0→ 1 or 1→ 0 [4]. Since the case

of n = 1 is completely characterized, we move to discuss the

case of n = 2. With n = 2 cells, the WOM problem becomes

interesting as early as k = 3, a case we study next.

A. Storing 3 bits in 2 cells

In an n = 2 code, the physical content of the memory

is described by a pair (c1, c2) ∈ {0, . . . , q − 1}2 of cell levels.

The information content is represented by an integer number

v ∈ {0, 1, . . . , 2k − 1} or {0, 1, . . . , 7} for k = 3. A mapping

between integers and k-bit vectors is implicitly assumed.

Reading information is then performed by a function ψ(c1, c2),

where ψ : {0, . . . , q − 1}2 → {0, 1, . . . , 7}. Writing k bits to the

physical cells is specified as a function µ of the current cell

contents and the new information integer. Thus

(c′1, c
′
2) = µ(c1, c2, v

′)

Such read and write functions for k = 3 are specified in

Figure 1. The numbers inside the matrix stand for information

integers in {0, 1, . . . , 7}. The coordinates marked at the exterior

of the matrix represent cell levels. The horizontal coordinate

is c1 and the vertical one is c2. The reading function ψ(c1, c2)

is simply the content of the (c1, c2) position of the matrix.

A write function µ(c1, c2, v
′) can be obtained from Figure 1

by defining (c′
1
, c′

2
) to be the nearest position that contains

the number v′, such that c′
1
> c1 and c′

2
> c2. For example,

2012 IEEE International Symposium on Information Theory Proceedings

978-1-4673-2579-0/12/$31.00 ©2012 IEEE 1396

suppose the current cell levels are (c1, c2) = (0, 2), storing

the integer 4. Then a value v′ = 7 is written by moving the

cells to levels (c′
1
, c′

2
) = (4, 3). Each polygon of area 8 in

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

c1

c2
write#1 write#2 write#3

Figure 1. A code that stores 3 bits in 2 cells with ⌊(q− 1)/2⌋ writes.

Figure 1 specifies the range of possible cell levels (c′
1
, c′

2
)

after a given write generation. Since the polygon for write i

has both c1 6 2i and c2 6 2i, Figure 1 specifies an n = 2,

k = 3 WOM code with t = ⌊(q − 1)/2⌋.

The code specified in Figure 1 provides re-write guarantees

by stacking 2-dimensional shapes along the main diagonal of

the (c1, c2) plane. The rest of the plane outside the diagonal

stack remains unused. We thus raise the question of whether a

better WOM code can be obtained by utilizing these remaining

cell states. The construction to follow in the next sub-section

answers this question to the affirmative.

B. n = 2 codes by 2-dimensional tilings

To get more writes from the 2-dimensional (c1, c2) plane we

take the following steps:

1) Tile the plane with the same basic shape from Figure 1.

2) Specify update functions that traverse the tiling in a way

that a certain number of writes is guaranteed for any

sequence of input-value updates.

1. Lattice tiling for k = 3

Let the polygon of area 8 used in Figure 1 be defined formally

as

S = {(x, y) | 0 6 x, y 6 2} \ {(2, 2)}.

Also define the center of S as the point (0, 0). A tiling of Z2 by

S is a pair (S , T), where T is a set of locations where centers

of S copies are placed, such that the copies are disjoint and

cover the entire Z2 plane [9]. A particularly convenient way

to obtain T is by using a lattice, in which case (S , T) is called

a lattice tiling. T is a lattice if its points can be written as

T = {u1v1 + u2v2 : u1, u2 ∈Z},

where {v1, v2} are linearly independent vectors in R2, which

are called the base for T . In other words, T is the set of

linear combinations of {v1, v2} with integer coefficients. The

particular lattice we use to tile S is generated by the vectors

v1 = (2, 2) and v2 = (3,−1), that is, its generator matrix is

G =

(

2 2

3 −1

)

.

Figure 2. The tiling T used for an improved n = 2, k = 3 WOM code.

Observe that the v1 = (2, 2) vector is exactly the one used in

the diagonal stacking of Figure 1. The vector v2 = (3,−1) is

now added to the base to form a complete tiling. The size of

this lattice is | det(G)| = 8, and the numbers between 0 and 7

of S are assigned to their respective locations in copies of S

translated by T . A truncated version of the infinite tiling T is

shown in Figure 2.

2. Decoding and update functions

According to the lattice tiling shown in Figure 2, every entry

(c1, c2) in the two-dimensional array is assigned with a number

ψ(c1, c2) ∈ {0, . . . , 7}. This gives us the decoding procedure of

the code. For the update procedure, given the current memory

state (c1, c2) and an integer m in the range 0 6 m 6 7 that

represents the new bit values, the new memory state (c′
1
, c′

2
)

satisfies the following conditions:

1) (c′
1
, c′

2
) > (c1, c2).

2) ψ(c′
1
, c′

2
) = m.

3) (c′
1
, c′

2
) minimizes the value of max{c′′

1
, c′′

2
} among all the

points (c′′
1
, c′′

2
) that satisfy conditions 1 and 2.

Lemma 1. If q = 8, then the code guarantees four writes.

Proof: Let us consider the four writes of this code, and let

(δi,1, δi,2) be the cell-level increments in each write for i =

1, 2, 3, 4 such that the final cell level is

(c1, c2) =

4
∑

i=1

(δi,1, δi,2).

If there exists 1 6 i 6 4 such that δi,1 < 2 then c1 6 7 and

similarly for c2. Hence we only need to consider the case

where for all 1 6 i 6 4 δi,1 = 2 or for all 1 6 i 6 4 δi,2 = 2.

From the tile shape, increments of δi,1 = δi,2 = 2 are never

needed, so at every write at most one of δi,1 and δi,2 equals

2. Assume without loss of generality that for all 1 6 i 6 4

δi,1 = 2, then δi,2 6 1. Consider the last write, note that instead

of the increment vector (δ4,1, δ4,2) = (2, δ4,2), we could use the

increment vector (1, δ4,2 + 3) without violating the decoding

1397

rule. This is true because

(2, δ4,2) − (1, δ4,2 + 3) = (1,−3) = v2 − v1.

and since v2 − v1 is a lattice point, the values of the points

(2, δ4,2) and (1, δ4,2 + 3) are the same. Hence the final cell

level will be in this case

(c1, c2) = (2, δ1,2) + (2, δ2,2) + (2, δ3,2) + (1, δ4,2 + 3) 6 (7, 7).

In general, if there are q levels, then the code guarantees t =

⌊4(q−1)/7⌋, which is better than the t = ⌊(q−1)/2⌋ of Figure 1.

C. n = 2 tiling codes for general k

We now generalize the construction from the previous sub-

section to general k. For that we use the two-dimensional

corner shape, which is formalized as follows. Let a and b

be positive integers such that a > b, then the two-dimensional

corner C(a, b) is given by the set

C(a, b) = {(x, y) | 0 6 x, y 6 a − 1} \ {(x, y) | b 6 x, y 6 a − 1}.

Proposition 2.(proof omitted) For all a > b > 0, a lattice tiling

to the shape C(a, b) is given by the vectors:

v1 = (b, b), v2 = (a, b − a).

Proposition 3. The points (a − 1, b − 1) and (b − 1, a + b − 1)

are equivalent (contain the same element).

Proof: Note that

(a − 1, b − 1) − (b − 1, a + b − 1) = (a − b,−a) = v2 − v1.

Lemma 4. Assume a/(a − b) = c is a positive integer. Then

there exists a q-ary WOM code, q = c(a − 1) + b that writes a

symbol of size M = a2 − (a − b)2, t = c + 1 times.

Proof: The proof is essentially the same as that of Lemma 1,

which is a special case a = 3, b = 2.

Suppose for an odd k we choose a = 1.5·2
k−1
2 , b = 2

k−1
2 , (c = 3),

where k is an odd integer, then the number of messages (the

tile size) is

M = a2 − (a − b)2 = (2a − b) · b = 2 · 2
k−1
2 · 2

k−1
2 = 2k.

The number of levels is

q = 3(a − 1) + b = 5.5 · 2
k−1
2 − 3

and by Lemma 4 this gives t = 4 writes. The total rate of this

code (sum rate of the 4 writes) is R = 4 · k/2 = 2k, where the

denominator 2 is the number of cells used by the code. An

upper bound on the rate for this q and t = 4 is [2]:

log2

(

q + 3

4

)

< log2













(5.5 · 2
k−1
2)4

24













= 4 ·
k − 1

2
+ 4 · log2 5.5 − log2 24

= 2k − 2 + 9.8377 − 4.585 = 2k + 3.2527.

Hence, with only two cells we can already achieve a WOM

code which is within at most an additive constant 3.2527 of

the capacity. We note further that this bound is only known to

be achievable with non equal-rate writes, while in our codes

the rate is identical in all 4 writes.

III. Joint Storage of “Hot” and “Cold” Bits

We now move to study a new type of WOM codes, where

part of the input bits are allowed to be written multiple times,

and another part are only allowed a single write. The former

are called hot bits and the latter are called cold bits. The

motivation for this model comes from the need of solid-state

storage devices to level the wear between frequently and rarely

written data blocks, which requires to jointly store them on the

same physical cells.

To understand the model, we start with a simple example. In

Figure 3 we show the level transition diagram of a single cell

code for one hot and one cold bit. The stored information

bits appear at the bottom of the figure, the right of which

(underlined) is the hot bit. Solid arrow lines represent changes

in the hot bit, and dashed arrow lines represent re-writing the

same value for the hot bit.

0 1

2

2

3

3

4

4

5

5

6 7

00 01 10 11

write #1

write #2

write #3

Figure 3. Code for hot+cold bit in 1 cell with ⌊q/2⌋ total writes.

Restricting the cold bit to up to one write allows a total

number of writes that equals t = ⌊q/2⌋ (including the one cold

write). This is better than the standard n = 1, k = 2 WOM

code that gives only t = ⌊(q − 1)/3⌋ writes. It also gives one

more write than an n = 1, k = 2 floating code [4]. Note that

the t writes of the hot and cold bit can be performed in any

order (moving to the right part of the diagram after a cold

write can be done at any level). The following lemma states

that the code of Figure 3 is optimal.

Lemma 5.(proof omitted) Any one-cell code that stores a single

hot and a single cold bit guarantees at most ⌊q/2⌋ writes.

A. Two-cell hot+cold bit storage

We now detail a two-cell scheme to jointly store one hot

and one cold bit. We start with specifying the decoding

rule pictorially in Figure 4. As in the two-cell schemes of

the previous section, the coordinates at the exterior of the

matrix represent physical-cell levels, and the integers within

the matrix are the information content of the stored bits: 0

stands for 00, 1 stands for 01, 2 stands for 10 and 3 stands for

11. The underlined bit is the hot bit that can change multiple

times in the write sequence. The non-underlined bit is the cold

bit that can be written once, at any point of the write sequence.

To support unrestricted re-writing of the hot bit, the following

transitions must be possible without decrease in physical-cell

levels:

0→ {0, 1}, , 1→ {0, 1}, , 2→ {2, 3}, , 3→ {2, 3},

In addition, a single transition of the form 0 → 2 or 1 → 3

must be supported.

The formal specification of the decoding and update rules

are now given. Suppose the hot bit is denoted b1 and the cold

1398

0

0

0

0

1

1

1

1

2

2

2

23

3

3

0

0

1

1

2

2

3

3

4

4

Figure 4. Code for 1 hot bit and 1 cold bit in 2 cells with t = 2q− 3
writes, at most 1 of which is a cold-bit write.

bit is denoted b2. The cold bit b2 is written at most once and

the goal is allow as many total writes using n = 2 cells. The

levels of the two cells are denoted by c1 and c2.

The decoding rule D(c1, c2) = (b1, b2), previously described

in Figure 4, now follows:

1) D(0, 0) = (0, 0).

2) For all (c1, c2) , (0, 0),

a) b1 = (c1 + c2)(mod2),

b) If c1 > c2 then b2 = 0 and if c1 6 c2 then b2 = 1.

The encoding/update rule, E(c1, c2, i) = (c′
1
, c′

2
) is applied as

follows: the current memory state is (c1, c2) and the bit index

to be changed is i ∈ {1, 2}. We assume here that the second bit

changes at most once and when a bit is rewritten, its value

changes (otherwise, there is no need to change the memory

state). Furthermore, c′
1
> c1, c′

2
> c2. The following rules

constitute the encoder procedure:

1) If i = 2, then (c′
1
, c′

2
) = (c1, c2 + 2).

2) If i = 1, then apply the following rules:

a) If c1 = c2 = 0, then (c′
1
, c′

2
) = (1, 0).

b) If c1 = c2 > 0, then (c′
1
, c′

2
) = (c1, c2 + 1).

c) If c1 = c2 + 2, then (c′
1
, c′

2
) = (c1, c2 + 1).

d) If c1 = c2 + 1, then (c′
1
, c′

2
) = (c1 + 1, c2).

e) If c2 > c1, then (c′
1
, c′

2
) = (c1 + 1, c2).

The rules become clearer when consulting Figure 4. The 5

cases in item 2 above correspond to the following, respectively.

a) 0 at the lower left corner changing to 1 by moving right.

b) 2 changing to 3 by going up one level.

c) 0 changing to 1 by going up one level.

d) 1 changing to 0 by going right one level.

e) 3 changing to 2 (or 2 changing to 3) by going right one

level.

The following lemma will help proving the code properties.

Lemma 6.

1) When b2 = 0, the hot bit b1 can be updated by moving

(c1, c2) to a state of the form (x + 1, x) or (x + 2, x).

2) When b2 = 1, the hot bit b1 can be updated by moving

(c1, c2) to a state of the form (x, x) or (x, x + 1).

Proof: Immediate from Figure 4.

Now we prove the rewrite properties of the code.

Proposition 7. The number of writes the code guarantees is t =

2(q − 1) − 1 including the possible rewrite of the cold bit.

Proof: From Lemma 6 part 1, if the cold bit never changes

its value then writing stops when the memory state is (q −

1, q−2), after alternating +1 changes in c1 and c2. Thus, there

are q − 1 + q − 2 = 2(q − 1) − 1 writes. From Lemma 6 part

2, if the cold bit changes its value, then writing stops when

the memory achieves state (q − 1, q − 1), after q − 1 + q − 3

alternating +1 changes in c1 and c2 (for the hot bit) and a

single +2 change in c2 (for the cold bit). Thus, in that case

too there are q − 1 + q − 3 + 1 = 2(q − 1) − 1 writes.

Note that a trivial upper bound on the number of writes is

2(q− 1). However, it is possible to show that the construction

is strictly optimal.

Proposition 8. Any code guarantees at most 2(q−1)−1writes.

Proof: Assume in the contrary that there exists a code which

guarantees 2(q− 1) writes. Let us consider 2(q− 1)− 1 writes

where only the hot bit b1 changes its value. Then, the memory

state is either (q−1, q−2) or (q−2, q−1), and b1 = 1. Without

loss of generality, assume it is the first state. Therefore, the

decoded value of the memory state (q − 1, q − 2) is (b1, b2) =

(1, 0). On the following write, it is possible to change the

two-bits value to either (0, 0) or (1, 1) but there is only one

memory state that is accessible, (q − 1, q − 1), which leads to

a contradiction.

B. Multiple cold bits and a single hot bit

In this section we would like to extend the 2-cell hot+cold

construction of the previous sub-section such that it will be

possible to store multiple cold bits and a single hot bit. First,

note that we can take k copies of the previous construction,

that is, 2k cells. In every pair of cells, a single cold bit is stored

and a single hot bit. Since we only need to store a single hot

bit, its value is simply the sum of the k hot bits. Thus, it is

possible to store a single hot bit and k cold bits in n = 2k cells

with k(2q − 3) = n(q − 1) − k writes.

Next we show another example of such a construction with

fewer cells n = k + 1. Let us denote the cells by c0, c1, . . . , ck.

Our idea is similar to the one we just presented, with the cell

c0 acting as a mutual cell to all the other k cells. That is,

every two cells of the form (c0, ci) for 1 6 i 6 k, generate

a code of a single hot and a single cold bit. Let us now

describe the encoding and decoding rules. We denote the hot

bit by b0 and the cold bits by b1, b2, . . . , bk. The decoding

and encoding maps of the previous construction (Figure 4) are

denoted by D(c, c′),E(c, c′, i), respectively. The new decoding

map D∗(c0, c1, . . . , ck) = (b0, b1, . . . , bk) is applied as follows.

1) b0 =
∑k

i=0 ci.

2) For 1 6 i 6 k, bi = D(c0, ci)2 (bit 2 of the decoded pair).

The new encoding map E∗(c0, c1, . . . , ck, s) = (c′
0
, c′

1
, . . . , c′

k
),

is applied as follows, where 0 6 s 6 k and (c0, c1, . . . , ck) 6

(c′
0
, c′

1
, . . . , c′

k
). We distinguish between the two cases of

whether the hot or a cold bit changes its value.

1) s , 0 (cold): then (c′
0
, c′s) = E(c0, cs, 2) = (c0, cs + 2).

2) s = 0 (hot): if there exists 1 6 i 6 k such that E(c0, ci, 1) =

(c0, ci+1) then set c
′
j
= c j for 0 6 j 6 k and j , i, and c′

i
=

ci + 1. Otherwise (that is, for all 1 6 i 6 k, E(c0, ci, 1) =

(c0 + 1, ci)), set (c
′
0
, c′

1
, . . . , c′

k
) = (c0 + 1, c1, . . . , ck).

Let us show an example of this construction.

Example 1. In this example, we show how the construction

works for k = 4, q = 5. Thus, we store a single hot bit b0 and

1399

four cold bits b1, b2, b3, b4 in five cells c0, c1, c2, c3, c4.

Written Bit Memory State Bits State

(c0, c1, c2, c3, c4) (b0, b1, b2, b3, b4)

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

3 (0, 0, 0, 2, 0) (0, 0, 0, 1, 0)

1 (0, 2, 0, 2, 0) (0, 1, 0, 1, 0)

0 (1, 2, 0, 2, 0) (1, 1, 0, 1, 0)

0 (2, 2, 0, 2, 0) (0, 1, 0, 1, 0)

0 (2, 3, 0, 2, 0) (1, 1, 0, 1, 0)

0 (2, 3, 1, 2, 0) (0, 1, 0, 1, 0)

0 (2, 3, 1, 3, 0) (1, 1, 0, 1, 0)

0 (2, 3, 1, 3, 1) (0, 1, 0, 1, 0)

4 (2, 3, 1, 3, 3) (0, 1, 0, 1, 1)

0 (3, 3, 1, 3, 3) (1, 1, 0, 1, 1)

0 (3, 3, 2, 3, 3) (0, 1, 0, 1, 1)

0 (3, 4, 2, 3, 3) (1, 1, 0, 1, 1)

0 (3, 4, 2, 4, 3) (0, 1, 0, 1, 1)

2 (3, 4, 4, 4, 3) (0, 1, 1, 1, 1)

0 (3, 4, 4, 4, 4) (1, 1, 1, 1, 1)

0 (4, 4, 4, 4, 4) (0, 1, 1, 1, 1)

The correctness of this construction is proved in the follow-

ing two lemmas.

Lemma 9. IfD∗(c0, c1, . . . , ck) = (b0, b1, . . . , bk) and the hot bit

changes its value then

D∗(E∗(c0, c1, . . . , ck, 0)) = (b0, b1, . . . , bk).

Proof: If the hot bit changes its value then exactly one cell

increases by one level. Therefore, the value of the hot bit is

flipped. When applying the encoding map E(c0, ci, 1) for all

1 6 i 6 k, if there exists i such that E(c0, ci, 1) = (c0, ci + 1),

then necessarily the value of all the cold bits besides the i-

th bit do not change. However, the value of the i-th bit does

not change either because D(c0, ci + 1)2 = bi. If there does

not exist i such that E(c0, ci, 1) = (c0, ci + 1), then for all i,

E(c0, ci, 1) = (c0 + 1, ci). In this case, the cell c0 increases by

one level and thus for all i we get D(c0 + 1, ci)2 = bi. That is,

the values of all cold bits remain the same in this case too.

For the correctness of the cold writes we have the following.

Lemma 10.(proof omitted) If D∗(c0, c1, . . . , ck) =

(b0, b1, . . . , bk) and the s-th bit, 1 6 s 6 k, changes its

value (for the first time) then

D∗(E∗(c0, c1, . . . , ck, s)) = (b0, b1, . . . , bs−1, bs, bs+1, . . . , bk).

The number of writes of this code is proved in the next

theorem.

Theorem 11. The code guarantees t = n(q − 1) − k writes.

Proof: Since every pair of cells of the form (c0, cs) consti-

tutes an independent hot-cold bit code, it is possible to write

2(q− 1)− 1 times. However, since the cell c0 is a mutual cell

to all these k codes, we get that the number of write is

q − 1 + k(q − 2) = (k + 1)(q − 1) − k = n(q − 1) − k.

C. Two hot bits, one cold bit

In this part we extend the 2-cell hot+cold construction of

sub-section III-A to storing 2 hot bits and 1 cold bit. As it

turns out, the penalty (in the number of writes t) for adding a

cold bit to the cells remains negligible even when the number

of hot bits is doubled from 1 to 2. Due to lack of space we will

only include the pictorial specification of the code in Figure 5.

The key feature to see in Figure 5 is that changing the cold

bit (MSB) is done by moving upward from the solid stack of

squares to the dashed one. Updates of the hot bits are done in

a diagonal fashion. The re-write capabilities of the code are

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

4

4

4

55

5

5

5 6

6

6

6

6

7

7

7

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

c1

c2

Figure 5. Code to store 2 hot bits and 1 cold bit in 2 cells with
th = q − 3 writes of the 2 hot bits and 1 write of the cold bit.

summarized in the following proposition.

Proposition 12.(proof omitted) The specified code supports q−

3 writes of the hot-bit pair in addition to a single write of the

cold bit. The write of the cold bit can be anywhere in the write

sequence.

The fact that the pair of hot bits can be written q − 3 times,

very close to the q − 1 writes possible in the absence of the

cold-bit write, means that the penalty we suffer to level the

wear between the hot and cold bits is insignificant.

References

[1] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans-
actions on Information Theory, vol. 30, pp. 470–480, 1984.

[2] F. Fu and A. H. Vinck, “On the capacity of generalized write once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Transactions on Information Theory, vol. 45, no. 1, pp.
308–313, 1999.

[3] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write once
memory codes for multilevel flash memories,” Proc. IEEE Int. Symp.
Inform. Theory, pp. 2484–2488, St. Petersburg, Russia, August 2011.

[4] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint infor-
mation storage in flash memories,” IEEE Transactions on Information
Theory, vol. 56, no. 10, pp. 5300–5313, 2010.

[5] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Trajectory codes for
flash memory,” IEEE Transactions on Information Theory, vol. submitted,
available at arXiv.org.

[6] S.Kayser, E.Yaakobi, P.H.Siegel, A. Vardy, and J.K.Wolf, “Multiple-
write WOM-codes,” Proc. 48-th Annual Allerton Conference on Com-
munication, Control and Computing, Monticello, IL, September 2010.

[7] B. Kurkoski, “Rewriting codes for flash memories based upon lattices,
and an example using the E8 lattice,” in Proc. IEEE Globecom 2010,
ACTEMT Workshop, 2010.

[8] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,”
Information and Control, vol. 55, no. 1, pp. 1–19, 1982.

[9] S. Stein and S. Szabo, Algebra and Tiling. The Mathematical Association
of America, 1994.

[10] Y.Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp.
3692–3697, June 2011.

1400

