
7006 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

High Sum-Rate Three-Write and Nonbinary
WOM Codes

Eitan Yaakobi, Member, IEEE, and Amir Shpilka

Abstract— Write-once memory (WOM) is a storage medium
with memory elements, called cells, which can take on q levels.
Each cell is initially in level 0 and can only increase its level.
A t-write WOM code is a coding scheme, which allows one
to store t messages to the WOM such that on consecutive
writes every cell’s level does not decrease. The sum-rate of the
WOM code, which is the ratio between the total amount of
information written in the t writes and number of memory cells,
is bounded by log(t + 1). Our main contribution in this paper is
a construction of binary three-write WOM codes with sum-rate
approaching 1.885 for sufficiently large number of cells, whereas
the upper bound is 2. This improves upon a recent construction
of sum-rate 1.809. A key ingredient in our construction is a
recent capacity achieving construction of two-write WOM codes,
which uses the so-called Wozencraft ensemble of linear codes.
In our construction, we encode information in the first and
second write in a way that leaves a large number (roughly
half) of the cells nonprogrammed. This allows us to use the
above two-write construction in order to invoke a third write
to the memory. We also give specific constructions of nonbinary
two-write WOM codes and multiple writes, which give better
sum-rate than the currently best known ones. In the construction
of these codes, we build upon previous nonbinary constructions
and show how tools such symbols relabeling can help in achieving
high sum-rates.

Index Terms— Coding theory, write-once memories, flash
memories, WOM-codes.

I. INTRODUCTION

WRITE-ONCE memories (WOM) were first introduced
in 1982 by Rivest and Shamir [22]. Their motivation

came from storage medium like punch cards and optical disks.
These media are comprised of storage elements, which we call
cells. The most distinguishable property of these cells is their
asymmetric programming attribute. In the binary version, it is
only allowed to irreversibly program each cell from value zero
to value one. If a cell can accommodate more than two levels,

Manuscript received October 27, 2012; revised February 26, 2014; accepted
June 24, 2014. Date of publication August 26, 2014; date of current version
October 16, 2014. E. Yaakobi was supported in part by the ISEF Foundation,
New York, NY, USA, and in part by the Lester Deutsch Fellowship. A. Shpilka
was supported by the Israel Science Foundation under Grant 339/10. This
paper was presented at the 2012 IEEE International Symposium on Informa-
tion Theory [30].

E. Yaakobi is with the Department of Electrical Engineering,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
yaakobi@caltech.edu).

A. Shpilka was with the Centre Interfacultaire Bernoulli, École Polytech-
nique Fédérale de Lausanne, Lausanne 1015, Switzerland. He is now with
the Department of Computer Science, Technion-Israel Institute of Technology,
Haifa 32000, Israel (e-mail: shpilka@cs.technion.ac.il).

Communicated by V. Guruswami, Associate Editor for Complexity and
Cryptography.

Digital Object Identifier 10.1109/TIT.2014.2352213

TABLE I

A WOM CODE EXAMPLE

then on each programming operation, it is only possible to
increase the cell’s level. A WOM code is a coding scheme
which allows one to store information and reuse the WOM
more than once, while preserving the property that cells are
only allowed to increase their levels on each write.

The most famous example of a WOM code is the one
given by Rivest and Shamir for storage of two bits twice
using only three cells [22] (Table I). In their work, they also
analyzed the bounds on the amount of information possible
to store in a WOM and presented more codes. Since then,
more constructions were given in 1980’s and 1990’s, see [6],
[12], [21] as well as capacity analysis, see [9], [14], [25].

A renewed interest in WOM codes came along in the past
five years as a result of the tremendous research work on
coding for flash memories. Flash memory is another example
of a WOM where its cells are charged with electrons and thus
represent multiple levels [4]. Increasing a cell level is fast
and easy; however, in order to decrease its level, its entire
containing block of cells has to be erased. This does not
only affect the writing speed of the flash memory but also
significantly reduces its lifetime [4].

Assume t messages are stored to the memory, consisting of
n cells. On the i -th write, 1 � i � t , the message size is Mi .
The rate on the i -th write is defined to be Ri = log Mi

n , and the
sum-rate is Rsum = ∑t

i=1 Ri . The capacity region of a t-write
WOM is the set of all achievable rate tuples. For the binary
case, the capacity region was found in [9], [14], and [22].
It was also proved that the maximum achievable sum-rate for
a binary WOM code with t writes is log(t +1) (all logarithms
in this paper are taken base 2). These results were generalized
in [9] for non-binary WOM and the maximum sum-rate for
WOM with cells of q levels was shown to be log

(t+q−1
t

)
.

The main goal in designing a WOM code is to achieve
high sum-rate, while decreasing its encoding and decod-
ing complexities. In [28], motivated by the constructions
in [6] and [26], a capacity achieving two-write WOM code
construction was presented, and in [17], state of the art
results for multiwrite codes were given. Recently, in [24], yet
another two-write capacity achieving construction was given.

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YAAKOBI AND SHPILKA: HIGH SUM-RATE THREE-WRITE AND NONBINARY WOM CODES 7007

This construction is more attractive than the one in [28] in the
sense that it does not require a block-length as large as required
in [28] in order to achieve rates close to the capacity, and
furthermore, it has better encoding and decoding complexities.

For three-write WOM codes, the best sum-rate that can be
found according to [28] was 1.66 while the upper bound is 2.
The work in [24] showed another scheme which improved the
sum-rate to be 1.809. Recently two constructions of capacity
achieving WOM codes were presented [3], [23]. Burshtein
and Sturagslki gave in [3] a construction of WOM codes that
are based on polar codes [1]. While the last construction is
attractive from its encoding and decoding complexities point of
view, it doesn’t guarantee success in the worst case, that is, for
any sequence of writes. The construction [23] overcomes this
constraint and works for the worst case. However, it suffers
a large block length and hence is less attractive from the
practical point of view.

The first contribution we give in the paper is a construction
of three-write WOM codes. We follow up on a two-write
capacity achieving construction from [24]. The main idea of
this construction is to use a collection of binary codes that are
“MDS on the average”. Then, if on the first write a fraction of
at most p cells in an n-cell block are programmed, then on the
second write, it is possible to asymptotically program (1− p)n
more bits using one of the matrices in this collection. However,
for that purpose one needs to encode also the index of the
matrix that is used on the second write. In order to overcome
this drawback, it was shown that if the same strategy is invoked
for a relatively large number of blocks then one matrix will
suffice to guarantee a successful encoding on the second write.
In order to use this construction for a three-write WOM code,
we simply treat the third write as a second write of a two-
write WOM code from [24]. That is, if after the second write
only p out of the cells are programmed, then it is possible
to take advantage of these remaining non-programmed cells
in order to program roughly (1 − p)n more information bits.
These ideas enable us to give a construction of three-write
WOM code with sum-rate approaching 1.885 for sufficiently
large number of cells.

While the binary case received most of the attention in the
literature, significantly less is known for non-binary WOM
codes. This problem was already proposed by Rivest and
Shamir in their pioneering work [22]. The information theory
limits under constrained sources were analyzed in [8] and the
capacity region was studied in [9]. However, first WOM code
constructions, based on error-correcting codes, were given
only recently by Huang et al. in [15]. These results were
then improved in [11]. In [10], Gabrys and Dolecek gave a
construction of two-write WOM code for q = 3 and improved
some of the bounds on the sum-rate in case the rates on each
write are the same. In [19], Kurkoski gave a first analysis of
a potential construction of two-write non-binary WOM code
and Bhatia et al. extended this idea in [2] to show a specific
WOM code construction for arbitrary number of writes and
two cells. Yet another extension for two writes and multiple
cells was reported by Kurkoski [18]. Another family of non-
binary WOM, based on extending the work of Merkx [12],
was recently reported by Haymaker and Kelley in [13].

The second part of our work is dedicated for efficiently con-
structing first two and then multiple-write non-binary WOM
codes. Our approach is similar to the theme in constructing the
binary three-write WOM codes. Namely, on each write we use
ideas that do not (or slightly) reduce the rate and yet manage
to guarantee a large number of cells with a reasonably low
level. Our point of departure is a simple two-write construction
from [11], which on the first write programs only the low
levels in the cells and on the second write only the high levels.
We show a first technique to improve upon this construction
by relabeling symbols on the first write so there is a relatively
large number of cells with low level. Then, during the second
write, the cells with low level enable to accommodate the write
of another information word. The next step to improve this
result is to write biased data on the first write such that a
large number of cells are in low level after the first write.
Thus, it is possible to write even more information bits on the
second write and the sum-rate is improved again. Lastly, we
incorporate these ideas with another construction from [11]
to get our best results. Lastly, we use similar and other ideas
in order to present several constructions of reasonable block
lengths for multiple-write WOM codes.

The rest of the paper is organized as follows. In Section II,
we briefly review the definitions of WOM codes and state the
results which we will use in our constructions. In Section III,
we show our main result of a three-write WOM code con-
struction with sum-rate approaching 1.885. In Section IV, we
present constructions for two-write non-binary WOM codes
and in Section V, we show constructions for arbitrary number
of writes. All our constructions improve upon the currently
best known sum-rates. Finally, Section VI concludes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

In this work, the cells can have two or more (q) levels.
Initially, all cells are in level zero. On each write, it is only
possible to increase the levels of each cell. A vector x =
(x1, . . . , xn) ∈ {0, . . . , q−1}n will be called a cell-state vector.
For two cell-state vectors x and y, we say that x � y if xi � yi

for all 1 � i � n. For j � i , we use the notation [j : i] to
define the set of integers { j, . . . , i}. If x represents a bit value
then its complement is x = 1 − x , and for a binary vector
x = (x1, . . . , xn), x = (x1, . . . , xn). For any map f : A → B ,
Im(f) is the image of the map f .

Definition: An [n, t; M1, . . . ,Mt]q t-write WOM code is
a coding scheme comprising of n q-ary cells and is defined by
t pairs of encoding and decoding maps (Ei ,Di), for 1 � i � t .
The encoding map Ei is defined by

Ei : [1 : Mi] × Im(Ei−1) → {0, . . . , q − 1}n,

where, by definition, Im(E0) = {(0, . . . , 0)}, such that
Ei (m, c) � c for all (m, c) ∈ [1 : Mi] × Im(Ei−1). Similarly,
the decoding map Di is defined by

Di : Im(Ei) → [1 : Mi],
such that for all (m, c)∈[1:Mi]× Im(Ei−1), Di (Ei (m, c))= m.
The rate on the i -th write is defined by Ri = log Mi

n , and the
sum-rate is Rsum = ∑t

i=1 Ri .

7008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

We assume that the write number is known at every write
as this does not affect the asymptotic of the achievable rates;
for more details, see [28].

In [9] and [14], the capacity region of a binary t-write WOM
was found to be

Ct =
{
(R1, . . . ,Rt)|R1 �h(p1),R2 � (1− p1)h(p2), . . . ,

Rt−1 �
(t−2∏

i=1

(1 − pi)
)

h(pt−1),Rt �
t−1∏

i=1

(1 − pi),

where 0 � p1, . . . , pt−1 � 1/2
}
,

and log(t + 1) was proved to be the maximum sum-rate.
In [9], it was shown that the maximum sum-rate for q levels
is log

(q+t−1
t

)
. It was also shown that all rate-tuples in the

capacity region are achievable. However, the problem of
finding efficient code construction still remains a challenge.

The capacity region of a two-write WOM is given by

C2 = {
(R1,R2)|R1 � h(p),R2 � (1 − p), 0 � p � 1/2

}
.

The best sum-rate reported in the literature is 1.4928 [28] and
a code construction which is capacity achieving was given.
Recently, the work in [24] shows another capacity achieving
construction for which the code length and encoding and
decoding complexities are significantly better. The capacity
achieving constructions in [28] and in [24] use similar ideas.
If the WOM has n cells, then on the first write approximately
h(p)n bits are stored in the memory in a way that at most
pn cells are programmed. Then, on the second write, it is
shown how to store approximately (1 − p)n more bits on the
remaining (1 − p)n cells. However, while the construction
in [28] restricts on the first write which of the pn cells can be
programmed, in [24] any of the pn cells can be programmed.1

In order to accomplish this property, the construction from [24]
uses a set of “average” MDS codes which are derived from
a Wozencraft ensemble [16], [20]. This collection of matrices
guarantees that if on the first write at most p out of the n cells
in a block are programmed, then on the second write there
exists a matrix that can be used to encode roughly (1 − p)n
more information bits. But, since the index of this matrix has
to be encoded as well, it was shown that for a large number of
blocks the same matrix can be used and thus the degradation
in the rate to encode the matrix index is negligible. In order
to simply the description of the construction in the paper, we
will state the property we use from [24] for an individual block
and then the repetition of a large number of blocks will give
us the results and rate stated in the paper.

Theorem 1 [24]: For any 0 < p < 1 and ε > 0, there exists
a length-n WOM code Cp with rates (h(p)−ε, 1− p−ε) such
that on the first write any vector with weight at most pn can
be written.

A code whose existence is guaranteed by Theorem 1 will be
denoted in the paper by Cp, where 0 < p < 1. We furthermore
assume that the encoding map of the second write of Cp is
denoted by Ep and the decoding map of the second write is

1This is true in an asymptotic sense as Lemma 2 demonstrates, but for sake
of intuition it is best to think about it this way.

denoted by Dp . The useful property from Theorem 1 is used
in showing the next lemma, which can be used to construct
multiple-write WOM codes.

Lemma 2: For any ε > 0 and integer n there exists N =
poly(1/ε) · 2O(n) such that if there exists a t-write WOM code
with n cells and on the first t − 1 writes at most pn cells are
programmed, then there is a t-write WOM code of length N
that achieves the same rate on the first t − 1 writes and on
the last write achieves rate (1 − p − ε).

Sketch: We concatenate M = poly(1/ε) · 2O(n) copies
of the basic code, and set N = M · n. On the first t − 1
writes we encode using M independent copies of the given
coding scheme. Then, the last write is performed as the second
write of the construction in [24] and thus it is possible to
store (1 − p − ε)N more bits. The complexity of encoding
and decoding is polynomial (or even quasi-linear) in the
block-length N .

Remark 1: In the forthcoming constructions, it may be
easier to present the memory input w as a string in M =
{0, . . . , a −1}m . If w can be any word in M then it represents
m log a bits. However, in many cases we will choose only
words w in M such that the number of times each symbol
0 � � � a − 1 appears in w is fixed to be p�m, where m is
large enough and

∑a−1
�=0 p� = 1. Then, we will assume that the

message w represents m · H(p0, . . . , pa−1) bits, where H is
the entropy function. Even though this is not exactly accurate
as there is a O(log m) factor that has to be subtracted, we will
use this approximation in case m is a linear function of the
number of cells n. Note that the degradation in the sum-rate
is negligible as the block length goes to infinity. Furthermore,
we assume that an efficient mapping between all such words
w and the number of bits they represent is given, as this part
is out of the scope of the paper. For more details of how to
construct such mappings we refer the reader for example to
the enumerative encoding scheme by Cover [7].

Lastly, we note here that in many places we drop all notation
of floors and ceilings in order to ease the analysis of the
codes. However, the loss in the rate due to these roundings is
negligible and does not affect the asymptotic sum-rate results.

III. THREE-WRITE WOM CODES

In this section, we present our construction of three-write
WOM codes. As we use similar ideas, let us first briefly review
the three-write WOM code construction in [24] that achieves
sum-rate 1.809.

The construction in [24] uses n = 3m cells partitioned
into m three-cell blocks. In every three-cell block, the Rivest
Shamir construction, shown in Table I, is used such that on
the first two writes, the input to every block is two bits.
Alternatively, we can think on the input as a quaternary
symbol. In general, if any two quaternary symbols are written
to a three-cell block, then in the worst case, all three cells
are programmed. However, if, for example, on the first write,
the symbol zero is stored, then it is guaranteed that after the
second write at most one cell is programmed. Furthermore,
if a non-zero symbol is stored on both the first and second
write then exactly two out of the three cells are programmed.

YAAKOBI AND SHPILKA: HIGH SUM-RATE THREE-WRITE AND NONBINARY WOM CODES 7009

The guiding principles in the construction in [24] are to
program on the first two writes the least number of cells
possible in order to leave a large number of cells for the third
write. More specifically, two of the main ideas from [24] are
to write a biased quaternary vector and relabel its symbols
when necessary such that on the third write a large number
of three-cell blocks is left with zero or one cell programmed
in them. According to Lemma 2, if after the first two writes,
at most pn cells are programmed, then on the third write it
is possible to write approximately (1 − p)n more bits (at the
cost of having block-length which is exponentially longer, yet
with efficient (in the new block-length) encoding and decoding
algorithms).

The construction we present is similar but we use two-
cell blocks instead of three, which we simply call blocks.
We follow similar guidelines from [24] to decrease the worst
case maximum number of programmed cells after the first two
writes. We use n = 2m + 1 cells, partitioned into m blocks
and one extra cell. We denote the m blocks by (c1, . . . , cm),
1 � i � m, ci = (ci,1, ci,2), and the extra cell by c2m+1.

We describe in details the encoding and decoding maps for
each of the three writes.

First Write: Write a message w1 ∈ {0, 1, 2}m with probabil-
ities p0 = 0.5, p1 = p2 = 0.25. Namely, w1 has m/2 zeros,
m/4 ones, and m/4 twos. For 1 � i � m, the i -th ternary
symbol w1,i is stored in the i -th block ci according to the
map ci = ψ(w1,i), where

ψ(0) = (0, 0), ψ(1) = (0, 1), ψ(2) = (1, 0).

The decoding of the message w1 is straightforward from this
definition. According to Remark 1 and since the number of
cells can be arbitrarily large, we conclude that the number of
bits stored on the first write approaches2

m · H(0.5, 0.25, 0.25) = 1.5m.

Second Write: The second write is performed in two steps.
On the first step we store roughly m bits and on the second step
approximately m/4 more bits. Let w2 ∈ {0, 1}m be a balanced
binary vector (i.e., it has the same number of zeros and ones)
and let S be the set of blocks that were not programmed on
the first write, i.e., S = {i ∈ [1 : m] | ci = (0, 0)}. Let

I0 = {i ∈ [1 : m] | w2,i = 0}, I1 = {i ∈ [1 : m] | w2,i = 1}.
If |S ∩ I0| � |S|

2 we let w′
2 = w2, and otherwise w′

2 = w2
and we program the (2m + 1)-th cell to be 1. The aim of this
choice of the vector w′

2 is to guarantee that at least half of the
blocks in S store bit-value zero of w′

2.
For 1 � i � m, w′

2,i is stored in ci according to its parity,
and as follows: c′

i = φ(ci , w
′
2,i), where

1) φ((0, 0), 0) = (0, 0) or (1, 1) and φ((0, 0), 1) = (0, 1)
or (1, 0). It will be explained in the second step which
option to choose in each case.

2) φ((0, 1), 0) = (1, 1), φ((0, 1), 1) = (0, 1).
3) φ((1, 0), 0) = (1, 1), φ((1, 0), 1) = (1, 0).

2This is only true in an asymptotic sense, and in reality, if the block-length
is n then we lost ε ≈ log(n)/n in the rate. Our final block length will need
to be exponential in the error parameter ε.

Now we explain the second step of the second write. Note
that if after the first write, the state of the i -th block is
ci = (0, 0) then according to the definition of φ there are two
options to program the i -th block. But, these options depend
on the value of w′

2,i and it is not necessarily clear to know
in advance in how many of these blocks the value of w′

2,i is
0 or 1. Therefore, it is not clear how to take advantage and
store more information this way (e.g., by treating (0, 0) and
(0, 1) as 0 and (1, 1) and (1, 0) as 1). However, in spite of
this difficulty, we next explain how to modify this idea and
store roughly m/4 more bits. Note also that if w′

2,i = 1 then
the number of programmed cells in the two options is one,
while for w′

2,i = 0 this is not case. Hence we do not seek to
program all of these blocks this way and leave some of the
blocks where w′

2,i = 0 to be programmed with (0, 0) so the
number of available cells on the third write is still relatively
large.

By abuse of notation, we say that the i -th block, 1 � i � m,
stores the information [ai , bi] ∈ {0, 1, 2} × {0, 1} or is called
an [ai , bi]-block if ai = w1,i and bi = w′

2,i . According to the
choice of the vectors w1,w

′
2, at least 1/4 of the blocks store

the information [0, 0] and hence we can say that for some
0 � x � 1/4,

1) (1/4 + x)m blocks store the information [0, 0].
2) (1/4 − x)m blocks store the information [0, 1].
3) (1/2 − (1/4 + x))m = (1/4 − x)m blocks store the

information [1, 0] or [2, 0].
4) (1/2 − (1/4 − x))m = (1/4 + x)m blocks store the

information [1, 1] or [2, 1].
We shall use m/4 among the m/2 blocks in S and store

one more bit in each one of them, while guaranteeing that the
number of available cells for the third write will be at least m.
This requires the following steps:

1) We mark m/4 out of the m/2 blocks in S as follows:
xm blocks which store the information [0, 0] and their
set of indices is denoted by S0, and (1/4 − x)m blocks
which store the information [0, 1] and their set of indices
is denoted by S1. The other 3m/4 blocks which do not
belong to S0 ∪ S1 are programmed according to the map
φ, while we choose to program here a [0, 0]-block with
(0, 0), that is we choose the option φ((0, 0), 0) = (0, 0)
for these blocks. Each of the m/4 blocks in S0 ∪ S1
has two options to be programmed, while preserving its
parity value. A [0, 0]-block can be programmed as (0, 0)
or (1, 1) and a [0, 1]-block as (0, 1) or (1, 0).

2) Next, we generate a length-m binary vectors from the
m blocks, a bit from each block. Each of the 3m/4
blocks that do not belong to S0 ∪ S1 is mapped to a
bit, representing a cell value, according to its most-
significant bit (MSB)

(0, 0), (0, 1) → 0, (1, 1), (1, 0) → 1.

The m/4 blocks in S0 ∪ S1 correspond to m/4 available
binary cells in an m-cell binary vector. Then, we use a
length-m two-write WOM code, denoted by C3/4 which
its existence is guaranteed according to Theorem 1.
Thus, we will write m/4 more bits according to the

7010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

second write of C3/4. (The remaining 3m/4 bits of the
binary two-write WOM code are the MSBs that we just
defined.)

3) Finally, we program the m/4 blocks in S0∪S1. If a block
stores the information [0, 0] then it is programmed to be
(0, 0) if its corresponding bit by the WOM code C3/4 is 0
and we program it to be (1, 1) if its corresponding bit
by C3/4 is 1. Similarly, a [0, 1]-block is programmed to
be (0, 1) if its corresponding bit by C3/4 is 0 and it is
programmed to be (1, 0) if its corresponding bit by C3/4
is 1.

To summarize this discussion, we give the exact encoding
map construction for the second write. We assume that the
cell-state vector after the first write is (c1, . . . , cm, c2m+1) and
the input to the encoder consists of two vectors: a balanced
vector w2 ∈ {0, 1}m and a vector s ∈ {0, 1}m/4−ε . We use a
binary two-write WOM code C3/4 of length m, given by the
construction in [24] and stated in Theorem 1, with encoding
map E3/4 and decoding map D3/4 for the second write. Yet
another property we take from the two-write construction
in [24] is the following. Assume k bits are to be stored on
the second write and there are more than k cells which were
not programmed on the first write. Then, it is possible to
specify the encoder with a set S of k cells out of the non-
programmed cells such that on the second write, only cells
from S are allowed to be programmed. (In fact, this is the
model for memories with defects.) Hence, the encoding map
E3/4(c, s, S) = c′ receives as an input a binary cell-state vector
c of weight at most 3m/4, a message s of m/4 − ε bits, and a
set S of m/4 cells that can be programmed. It outputs a vector
c′ � c, such that D3/4(c′) = s.

The steps to calculate the output (c′
1, . . . , c′

m, c′
2m+1) of the

encoding map are summarized as follows. The comments in
parenthesis are just side properties on the values we calculate.

1) S = {i ∈ [1 : m] | ci = (0, 0)}, (|S| = m/2).
2) I0={i ∈[1 : m] | w2,i = 0}, I1={i ∈[1 : m] | w2,i = 1},

(|I0| = |I1| = m/2).
3) If |S∩ I0| � |S|

2 then w′
2 = w2 and c′

2m+1 = 0; otherwise
w′

2 = w2 and c′
2m+1 = 1.

4) S′
0 = {i ∈ S | w′

2,i = 0}, S1 = {i ∈ S | w′
2,i = 1},

(|S′
0| + |S1| = m/2, |S1| � m/4 � |S′

0|).
5) Choose S0 ⊆ S′

0 such that |S0| = m/4 − |S1|.
6) For all i ∈ [1 : m]\(S0 ∪ S1), c′

i = φ(ci , w
′
2,i).

7) Let c=(c1, . . . , cm) be ci =ci,1 for i ∈[1 : m]\(S0 ∪ S1)
and otherwise ci = 0.

8) Let c′ = E3/4(c, s, S0 ∪ S1).
9) For i ∈ S0, c′

i = (c′
i , c′

i) and for i ∈ S1, c′
i = (c′

i , 1− c′
i).

To complete the second write, we show how to decode
the messages w2 and s. Assume the memory state is
(c1, . . . , cm, c2m+1) and we decode the messages ŵ2 and ŝ.
The message ŝ is decoded according to

ŝ = D3/4(c1,1, c2,1, . . . , cm,1),

and the message ŵ2 is decoded according to

ŵ2 = (c1,1 ⊕ c1,2, c2,1 ⊕ c2,2, . . . , cm,1 ⊕ cm,2)⊕ c2m+1 · 1,

where 1 denotes the all-ones vector, and ⊕ denotes the XOR
operation between two bits.

Third Write: We first calculate the minimum number of
available cells for the third write. With the notation of the
second write, note the following:

1) blocks storing the information [0, 0]: there are (1/4 +
x)m such blocks. In m/4 blocks, the two cells are not
programmed and in the other xm blocks, the two cells
may have been programmed.

2) blocks storing the information [0, 1]: there are (1/4 −
x)m such blocks and in all of them exactly one cell is
programmed.

3) blocks storing the information [1, 0] or [2, 0]: there are
(1/4 − x)m such blocks and in all of them the two cells
are programmed.

4) blocks storing the information [1, 1] or [2, 1]: there are
(1/4 + x)m such blocks and in all of them exactly one
cell is programmed.

Therefore, the number of cells which are not programmed after
the first two writes is at least

m/4 · 2 + (1/4 − x)m · 1 + (1/4 + x)m · 1 = m,

and according to Lemma 2 it is possible to store approximately
m more bits.3 That is, now we choose a length-2m two-write
WOM code C1/2 with encoding map E1/2 and decoding map
D1/2 for the second write. The information written on this
write is a word s′ of approximately m bits which will be
encoded by E1/2(c, s′) and decoded by E1/2(c), where c is
the cell-state vector of the first 2m cells during encoding and
decoding.

To conclude, the sum-rate of the construction approaches

3m/2 + (m + m/4)+ m

2m + 1
= 1.875 − 1.875

2m + 1
.

As the value of m is sufficiently large, we conclude that the
sum-rate approaches 1.875.

A small improvement is achieved in case that the probability
p0 on the first write is not 0.5. Assume that w1 is distributed
according to p0 = p, p1 = p2 = (1 − p)/2. Thus, the rate on
the first write approaches (h(p)+(1− p))/2. The construction
is similar with the following modification on the number of
blocks of each type on the second write:

1) p/2 + x of the blocks store the information [0, 0].
2) p/2 − x of the blocks store the information [0, 1].
3) 1/2 − (p/2 + x) = (1 − p)/2 − x of the blocks store

the information [1, 0] or [2, 0].
4) 1/2 − (p/2 − x) = (1 − p)/2 + x of the blocks store

the information [1, 1] or [2, 1].
As before, roughly m bits are stored on the first step of the
second write. By marking xm [0, 0]-blocks and (p/2 − x)m
[0, 1]-blocks, approximately xm + (p/2 − x)m = pm/2 more
bits are stored using another two-write WOM code C1−p/2.
Thus, the rate on the second write approaches (1 + p/2)/2.
The remaining number of cells for the third write is

3More accurately, we should move to a code which is a concatenation of
our construction with itself many (i.e. exp(mn)) times and in the new code we
will manage to write on the remaining m bits in each block. For simplicity
of exposition we keep the current description and just note that we need
block-length that is exponentially long in the error parameter ε.

YAAKOBI AND SHPILKA: HIGH SUM-RATE THREE-WRITE AND NONBINARY WOM CODES 7011

given by:

1) At least pm/2 blocks store the information [0, 0] and
their two cells are not programmed. They contribute at
least pm cells.

2) (p/2 − x)m blocks store the information [0, 1] and
exactly one of their cells is programmed. They contribute
(p/2 − x)m cells.

3) ((1 − p)/2 + x)m blocks store the information [1, 1] or
[2, 1] and just one of their cells is programmed. They
contribute ((1 − p)/2 + x)m cells.

Hence, there are pm + (p/2 − x)m + ((1 − p)/2 + x)m =
(1/2 + p)m available cells for the third write. Thus, for large
number of cell, the sum-rate approaches

(h(p)+ 1 − p)+ (1 + p/2)+ (p + 1/2)

2
.

This term is maximized for p =
√

2
1+√

2
and its value is 1.885.

We summarize this in the following theorem.
Theorem 3: For any ε > 0, there exists a three-write WOM

code of sum-rate at least 1.885 − ε.
To conclude our discussion, note that the construction

in [23] gives WOM codes which achieve the capacity, that is,
in our case WOM codes with sum-rate approaching 2. As in
our construction, the main drawback of [23] is its significant
block length, which is in the order of (t/ε)O(t/ε). Neverthe-
less, our construction has the advantage that it also provides
ideas that can be used for constructing codes of reasonable
block-lengths.

IV. TWO-WRITE WOM CODES OVER LARGE ALPHABETS

In this section, we give new constructions of two-write
WOM codes over larger alphabets. We shall consider alphabets
of size q , namely, {0, . . . , q−1}, where on each write it is only
possible to increase the level of each cell. The motivation in
constructing these codes is inspired by similar ideas from the
construction of binary three-write WOM codes in Section III
coupled with two constructions from [11].

What we show next is an approach for constructing two-
write WOM codes with sum-rate of log(q2/3)+ O(log(q)/q).
The term O(log(q)/q) represents our improvement over exist-
ing constructions and note that the theoretical upper bound in
this case is log

(q+1
2

)
[9]. This is done in several steps. First, we

start with a simple construction. Then, we show improvements
for this construction using an idea of [24]. Finally, we embed
these ideas together with a construction in [11] in order to
achieve the currently best known sum-rates. We then show
that our approach besides being theoretically better also yields
concrete constructions which beat the current state of the
art constructions for alphabets of size 8 and 16 starting at
block lengths which are not too large. We note that the recent
work [23] gave constructions that are better for very large
block-length, but the methods of [23] inherently demand a
large block-length and so the codes that we obtain here are
more likely to be practical than those obtained in [23].

Let us first start with a simple construction, reported also
in [11]. We use it as a building step for our construction.

A Simple Construction: Assume q is even. On the first write
we store an arbitrary word w1 ∈ {0, . . . , q/2}n and on the
second write a word w2 ∈ {0, q/2 + 1, . . . , q − 1}n . For 1 �
i � n, if w2,i �= 0 then we write w2,i in the i -th cell, and
otherwise (w2,i = 0) we change the content of the i -th cell to
q/2. Since we wrote q/2 only when w2 is zero, we will be
able to recover w2 easily. The sum-rate of this construction is

log(q/2 + 1)+ log(q/2) = log(q(q + 2)/4).

A. First Idea, Renaming the Symbols

Note that if w1 and w2 were chosen uniformly at random,
from their respective domains, then we would have �(1/q)
coordinates in which it holds that w1 is smaller than, say,
q/2 − q/ log(q), and that w2 is zero. A much better sum-rate
would be achieved if we could store more information on these
memory cells. For example, we could hope to encode there
roughly O(n/q) symbols in an alphabet of size O(q/ log(q)).
If we could do that, then the rate on the second write will be
log(q/2)+ O((1/q) log(q)), as we wanted.

There are several problems of course. The first is that w1
does not necessarily have many “small” coordinates, e.g., it
could be the constant q/2 word. Similarly, it can be the case
that w2 has no zeros. An even bigger concern is how to make
sure that there are indeed O(1/q) coordinates in which w1 is
small and w2 is zero.

The idea of [24] for overcoming these issues is to simply
rename the symbols so that we will have many coordinates
with the required properties. This is done by adding a few
more coordinates to the code (when n is large this has a
negligible effect on the sum-rate) in which we write the new
representations of the symbols. We illustrate these ideas in the
following example.

Example 1: In this example, we construct two-write WOM
codes for q = 8. We let the length of the code be N = n + 3.

First Write: We get a word w1 ∈ {0, 1, 2, 3, 4}n . Let α �
β ∈ {0, . . . , 4} be the two most common values appearing
in w1. Define a new word w′

1 as follows. Whenever w1,i = α
we set w′

1,i = 0 and when w1,i = 0 we write w′
1,i = α.

In the same way we replace the value 1 with β. The rest of
the coordinates are unchanged. We now write w′

1 to the first
n memory cells as is. In order to recover w1 we write α in
the (n + 1)-th cell and β in the (n + 2)-th cell. It is clear how
we can recover w1 by reading the memory cells.

Second Write: Let w2 ∈ {0, 5, 6, 7}n and w3 ∈ {1, 2, 3}n/10

be the input words to be written. Let I ′ be the set of “small”
coordinates of w′

1, i.e., I ′ = {i | w′
1,i � 1}. Note that

|I ′| � (2/5) · n. Let γ ∈ {0, 5, 6, 7} be the most common
symbol appearing in (w2)I ′ . That is, we only consider the
coordinates I ′ and among them we check which value was
the most popular in w2. (We break ties arbitrarily.) Let I ′′ =
{i | i ∈ I ′ and w2,i = γ }, and note that

|I ′′| � (1/4) · |I ′| � n/10.

Let I be the first n/10 coordinates of I ′′. We now write γ on
the N-th memory cell and define a new word w′

2 as follows.
Whenever w2 had zero we change it to γ and whenever it

7012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

had γ we change it to zero. We now write the rest of the
memory cells as follows.

1) If w′
2,i �= 0 then we write its value to the i -th cell.

2) If w′
2,i = 0 and i /∈ I then we write the value 4 in the

i -th cell.
3) If w′

2,i = 0 and i ∈ I and it is the j -th element in I
(according to the order 0 < 1 < 2 < · · · < n/10) then
we write the value w3, j in the i -th cell (alternatively, we
can think of w3 as w3 ∈ {1, 2, 3}|I | and write its j -th
coordinate). Notice that for i ∈ I , w′

1,i � 1 � w3,i and
so this is a “legal” write.

In order to decode the word w2, one needs to read all cell
levels, while treating levels 1, 2, 3, and 4 to be zero and
converting the γ symbol. The word w3 is decoded according
to the first n/10 cells of level less than 4.

Finally, we estimate the sum-rate of the construction. In the
first write we wrote an arbitrary word in {0, 1, 2, 3, 4}n

so we transmitted log(5n) = log(5) · n bits of informa-
tion. In the second write we transmitted a pair (w2, w3) ∈
{0, 5, 6, 7}n × {1, 2, 3}n/10 so overall we sent in the
second write 2n + (log(3)/10)n bits. Thus, the sum-rate,
given by

(log 5 + 2 + log 3/10) · (n/N)

= (log 5 + 2 + log 3/10) ·
(

1 − 3

n + 3

)

,

approaches ≈ 4.4804 for n large enough. In particular, for
n > 31675 this already improves upon the current state of the
art, given in the work of Gabrys et al. [11], which has sum-
rate 4.4784. Note that the upper bound on the sum-rate in this
case is log

(9
2

) = log 36 ≈ 5.1699.
The construction in Example 1 can be extended for arbi-

trary q and will be called Construction 1. We state the con-
struction and prove its sum-rate result (in a slightly informal
manner) in the next theorem.

Theorem 4: Construction 1 achieves sum-rate 2 log(q/2)+
O(log(q)/q).

Proof: Let us assume that q is even. The case where
q is odd will be very similar. Let 0 < � < q/2 be some
fixed integer, which will be determined later. Assume there
are N = n + 1 cells.

First Write: We get a balanced word w1 ∈ {0, . . . , q/2}n

(we can also change the representation of some of the symbols,
but for simplicity we choose w1 to be balanced since it does
not incur any rate loss). We write the word w1 to the memory
such that the i -th cell, 1 � i � n is programmed to level
(w1)i . The decoding is clear.

Second Write: We get two words:

1) w2 ∈ {0, q/2 + 1, . . . , q − 1}n,

2) w3 ∈ {�− 1, . . . , q/2 − 1} �n/(q/2+1)
q/2 .

Let I ′ = {i | (w1)i � �− 1}, and note that

|I ′| � �n/(q/2 + 1).

We let γ ∈ {0, q/2+1, . . . , q−1} be the most frequent symbol
of w2 in the set I ′ and we generate a new word w′

2, where
the symbol γ is flipped with 0. This change is marked in the

last cell. Now, we let I ′′ = {i | i ∈ I ′ and (w2)i = γ }, so

|I ′′| � |I ′|
q/2

� �n/(q/2 + 1)

q/2
,

and finally we choose I to be a subset of the first �n/(q/2+1)
q/2

cells in I ′′. The words w′
2 and w3 are stored in the memory

as was demonstrated in Example 1. If w′
2,i �= 0 then its value

is written to the i -th cell. If w′
2,i = 0 and i /∈ I then the

value q/2 is written to the i -th cell. Finally, if w′
2,i = 0 and

i ∈ I and it is the j -th element in I , then the value w3, j is
written to the i -th cell.

In order to decode the word w2, the value of its i -th symbol
is determined from the i -th cell, ci . If ci > q/2 then w2,i = ci

and otherwise w2,i = 0. The word w3 is determined from the
first �n/(q/2+1)

q/2 cells of value less than q/2 and these cells

determine the �n/(q/2+1)
q/2 symbols of w3.

Finally, we get that the sum-rate approaches

log
(q

2
+ 1

)
+ log

(q

2

)
+ �

q
2 (

q
2 + 1)

· log
(q

2
− �+ 1

)

= log
(q

2
(
q

2
+ 1)

)
+ � log

(q
2 − �+ 1

)

q
2 (

q
2 + 1)

.

Now, if we choose � = q/2 − q
�log q , we get sum-rate

= log
(q

2
(
q

2
+ 1)

)
+

(
q/2 − q

�log q
)

log
(

q
�log q + 1

)

q
2 (

q
2 + 1)

,

which for q large enough is in the order of 2 log(q/2) +
O(log(q)/q).

We finally note in this part that it is possible to choose
a different alphabet size for the words on the first write or
remap more symbols on the second write. These two options
along with setting other values for � can give other rate
pairs. However, we chose these parameters and remapped only
a single symbol in order to maximize the sum-rate of this
construction.

B. Second Idea, Writing Balanced Vectors on the First Write

Next, we show how to achieve another improvement to
the result of Construction 1. Instead of renaming symbols on
the first write, the main idea and modification from the last
subsection is to force having a large number of symbols with
low levels on the first write. Even though this approach will
incur a degradation in the rate of the first write, it will enable
to increase the rate of the second write which in total improves
the sum-rate. We demonstrate it in the next example, which is
built upon Example 1.

Example 2: We improve the construction of the two-write
code for q = 8 in Example 1 as follows. Let N = n + 1.
Let 2/5 � p � 1 be some parameter. On the first write, we
store only words w1 ∈ {0, 1, 2, 3, 4}n that have at least pn
coordinates that are either zero or one (for simplicity, assume
that pn is an integer). First, we do not need to write α and β.
This enables us to take N = n +1. We repeat the construction
in Example 1 as before except for the following changes. The
word w2 ∈ {0, 5, 6, 7}n remains the same and the word w3

YAAKOBI AND SHPILKA: HIGH SUM-RATE THREE-WRITE AND NONBINARY WOM CODES 7013

satisfies w3 ∈ {1, 2, 3}pn/4. The sets I ′, I ′′ are defined to be
I ′ = {i | w1,i � 1} and I ′′ = {i | i ∈ I ′ and w2,i = γ },
where γ ∈ {0, 5, 6, 7} is the most common symbol appearing
in (w2)I ′ . Thus, we have that |I ′′| � pn/4 so we can let I
be the first pn/4 coordinates of I ′′. This explains the change
in the domain of w3. The rest of the construction remains the
same.

The sum-rate analysis is as follows. On the first write, we
store asymptotically

(h(p)+ p + (1 − p) log 3)n

many bits. On the second write, we stored

(2 + (p/4) log 3)n

bits. Thus, overall the asymptotic sum-rate is

(h(p)+ p + (1 − p) log 3 + 2 + (p/4) log 3)(n/(n + 1)).

Maximizing over p we get that for

p = 2/(2 + 33/4) ≈ 0.4672

the sum-rate is approximately 4.493, which improves upon the
sum-rate result of 4.4804 from Example 1.

To conclude this part, we show how to apply our ideas in
order to construct two-write WOM codes for q = 16.

Example 3: In this example we demonstrate how to apply
Theorem IV-A and its improvement to the case where q = 16.
As the the scheme for this case is similar to the case q = 8,
we only sketch the improvement to Theorem 4.

Let 5/9 � p � 1 be a parameter to be determined later
and N = n + 1. On the first write, we store only words
w1 ∈ {0, . . . , 8}n that have at least pn coordinates with
values in {0, 1, 2, 3, 4}. It follows that in the second write
we can write an additional w3 ∈ {4, 5, 6, 7}np/8 on top of
a word w2 ∈ {0, 9, . . . , 15}n . Thus we get an asymptotic
sum-rate of

n · (h(p)+ p log 5 + (1 − p) log 4 + log 8 + (p/8) log 4)

n + 1
,

and for p = 0.597829711 the sum-rate is larger than 6.314.
Looking at concrete numbers we see that for n = 5000 and
p = 0.598 our construction already gives a WOM code of
sum-rate larger than 6.31, while the previously best known
sum-rate is 6.3083 and the upper bound on the sum-rate
is 7.0875.

C. Improvement Using the Construction of [11]

By combining our techniques with Construction B of [11]
we can achieve better sum-rates. We call this method Construc-
tion 2 and we show that the sum-rate is roughly log(q2/3)+
O(log(q)/q).

First, let us remind Construction B from [11], which
achieves sum-rate log(q2/3). According to Construction B,
the cell levels are partitioned into three non-overlapping parts:
{0, . . . , q/3 − 1}, {q/3, . . . , 2q/3 − 1}, {2q/3, . . . , q − 1} (for
simplicity, we assume that q is a multiple of 3). On each
write, two messages are written: the first one is a binary
word and the second is a word over an alphabet of size q/3.

Let w1,1 ∈ {0, 1}n , w1,2 ∈ {0, . . . , q/3 − 1}n be the messages
on the first write and w2,1 ∈ {0, 1}n , w2,2 ∈ {0, . . . , q/3−1}n

be the messages on the second write. While there is no
constraint on the messages w1,2 and w2,2, the messages w1,1
and w1,2 belong to some two-write binary WOM code. On the
first write, the i -th cell is programmed to level q/3(w1,1)i +
(w1,2)i and on the second write it is programmed to level
q/3 + q/3(w2,1)i + (w2,2)i . Since the words w1,1 and w1,2
belong to a two-write WOM code, it is easy to verify that on
the second write, no cell can decrease its level. It is also clear
how to decode on each write and for more details we refer
the reader to [11]. If a capacity achieving two-write WOM
code is used in this construction then the sum-rate approaches
log 3 + 2 log(q/3) = log(q2/3).

We now show the sum-rate result of Construction 2.
Theorem 5: Construction 2 achieves sum-rate log(q2/3)+

O(log(q)/q).
Proof: As done in Construction B from [11], the cell

levels are partitioned into the same three groups while we also
assume here for simplicity that q is a multiple of 3. Let C be
a capacity achieving two-write binary WOM code of length n.
We construct a code with the same length which we describe
its first and second writes as follows:

First Write: We get two words, w1,1 ∈ {0, 1}n and w1,2 ∈
{0, q/3 − 1}n such that w1,1 belongs as a first write codeword
in C. Since C is a capacity achieving code the weight of the
binary word w1,1 on the first write is at most n/3. Let I ′ be the
set I ′ = {i |(w1,1)i = 0} and let 0 < � < q/3 be some integer
whose value will be determined later. Let γ1, γ2, . . . , γ� be the
� most frequent symbols of the word w1,2 in the set I ′ and
we define a new word w′

1,2 where the symbols γ1, γ2, . . . , γ�
are flipped with the symbols 0, 1, . . . , � − 1 (here and later
in the construction we assume that these changes are marked
in some extra cells, however this does not affect the sum-
rate of the code). Finally, the i -th cell is programmed to level
ci = q/3(w1,1)i + (w′

1,2)i . The decoding is done in a very
similar way.

Second Write: We get three words on this write, w2,1 ∈
{0, 1}n and w2,2 ∈ {0, . . . , q/3 − 1}n and w3 ∈ {� −
1, . . . , q/3 − 1}3�n/(2q2). The word w2,1 belongs as a second
write codeword in C while w1,1 was written on the first write.
Let I ′′ be the set of all cells which their level on the first write
is at most �− 1, that is I ′′ = {i |ci � �− 1} and note that

|I ′′| � �n/3

q/3
= �n/q.

Let γ ∈ {0, . . . , q/3−1} be the most frequent symbol of w2,2
over the cells in I ′′ and as before we generate a word w′

2,2
where γ is flipped with 0. Next, we let

I0 = {i | i ∈ I ′′ and (w2,2)i = γ and (w2,1)i = 0},
I1 = {i | i ∈ I ′′ and (w2,2)i = γ and (w2,1)i = 1}.

Assume that |I0| � |I1|, so

|I0| � (�n/q)/(2q/3) = 3�n/(2q2).

We marked this case on an additional cell as well and it will be
clear how to modify the construction for the case |I0| < |I1|.

7014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

TABLE II

SUM-RATE RESULTS FOR q = 8 AND q = 16

We let I be a subset of the first 3�n/(2q2) cells in I0. Now,
we are ready to write the word w3 as follows:

1) If (w2,1)i = 1 then the i -th cell is programmed to be
2q/3 + (w′

2,2)i .
2) If (w2,1)i = 0 and i /∈ I then the i -th cell is programmed

as q/3 + (w′
2,2)i .

3) If (w2,1)i = 0 and i ∈ I and it is the j -th element in I
then the i -th cell is programmed as (w3) j .

For decoding, the word w2,1 is decoded by (w2,1)i = 1
if ci � 2q/3 and otherwise (w2,1)i = 0. The word w2,1 is
decoded by (w2,1)i = (ci mod q/3) if ci � q/3 and otherwise
(w2,1)i = 0. The word w3 is determined according to the first
3�n/(2q2) cells of value less than q/3 and they determine the
3�n/(2q2) symbols of w3.

Finally, for large block lengths, we get that the sum-rate
approaches

log 3 + 2 log (q/3)+ 3�

2q2 · log
(q

3
− �+ 1

)

= log(q2/3)+ 3�

2q2 · log
(q

3
− �+ 1

)

Now, if we choose � = q/3 − q
�log q , we get sum-rate

log(q2/3)+
3(q/3 − q

�log q)
2q2 · log

(
q

�log q + 1

)

,

which for q large enough is in the order of log(q2/3) +
O(log(q)/q).

To conclude this section, we summarize the sum-rate results
for two writes over q = 8 and q = 16, using all the
techniques we discussed and mentioned, in Table II. Note that
the construction we took from [11] uses a two-write WOM
code. The first number in the fifth column corresponds to the
case where one takes the best known two-write WOM code
from [28] of sum-rate 1.4928. The second number corresponds
to the case where the WOM code achieves the maximum sum-
rate log 3. Note that the first number corresponds to codes with
a reasonable block-length, whereas the second one requires
exponentially longer block-length.

V. MULTIPLE WRITES WOM CODES

OVER LARGE ALPHABETS

In this section we consider the case of WOM codes with
t > 2 over an alphabet of size q . For ease of notation, a t-write
WOM codes which uses n cells of q levels and achieves sum-
rate r is denoted as an (n, t, q, r)-code. Furthermore, if the
WOM code has sum-rate which is greater than r then we
denote it as an (n, t, q,> r)-code.

We begin with an easy observation. If t1 + t2 = t and
q1 + q2 = q + 1 and there exist an (n, t1, q1, r1)-code and

an (n, t2, q2, r2)-code then we can combine them to get an
(n, t, q, r1 + r2)-code. Indeed, in the first t1 writes we use the
first code and write using symbols from {0, 1, . . . , q1 − 1}.
In the last t2 writes we use the second code and write using
the symbols {q1 − 1, . . . , q − 1}.

As in Section IV, if we had some information on the distri-
bution of symbols after the first t1 writes then, in principal, it
would have allowed us to encode more bits in the last t2 writes.
We demonstrate this idea by designing codes over the alphabet
q = 8 for the cases t = 3, 4.

We first demonstrate our ideas by giving an (n, 2, 5,
>3.28)-code for the first 2 writes and then combine it with
a simple (n, 1, 4, 2)-code to get an (n, 3, 8,>5.28)-code.
We then analyze the weight distribution after the first two
writes and obtain an (n, 3, 8,>5.36)-code.

An (n, 2, 5,>3.16)-code is constructed by simply writing
an arbitrary word in {0, 1, 2} in the first write and an arbitrary
word in {2, 3, 4} in the second write. An improvement can be
achieved if we insist that the word in the first write contained
at least 1/3 fraction of zeros and then, perhaps by changing
the meaning of some symbols in the word of the second write
as was done in Section IV, in the second write we get that
roughly 1/9 of the coordinates had the value 0 in both writes.
Therefore, we can encode another binary word of length n/9
into these locations, using the symbols {0, 1}. Thus, the sum-
rate is log(3)+ log(3)+ 1/9 > 3.28. Now, if we insist that in
the third write the word is again equidistributed in {0, 5, 6, 7},4
then we get (again, we may need to change a value in the word
to be written in that round), that there is a fraction of 1/12 of
the coordinates that were in {0, 1, 2} after the first two writes
and that got the value 0 in the third write. We can therefore
encode another bit on those coordinates using the values {2, 3}.
Thus, the sum-rate is

log(3)+ (log(3)+ 1/9)+ (log 4 + 1/12) > 5.36.

We now give another example consisting of an (n, 2, 6,
>3.75)-code and a simple (n, 1, 3, 2)-code, that yields an
(n, 3, 8,>5.33)-code. Again, by analyzing the weight distribu-
tion after the first two writes, we manage to push the sum-rate
to be greater than 5.44.

In the first write, we store an equidistributed word in
{0, 1, 2, 3}. In the second write, we write a word w2 in {0, 4, 5}
(where 0 means leave the current value unchanged). Again, by
possible switching the meaning of the alphabet, we can assume
that there is at least a 1/6 fraction of the coordinates that had
value in {0, 1} after the first write and 0 in the second write. On
those coordinates we can encode another bit by using the val-
ues {1, 2} (on the other coordinates that had value 2 we write 3
instead). This gives sum-rate log 4 + (log 3 + 1/6)> 3.75.
If we combined it with a third write word in {0, 6, 7}
then we get sum-rate >5.33. However, as before, we can
assume that 1/9 of the elements had value 0 in both the second
and third writes, and so now they store value in {0, 1, 2, 3}
and therefore, by pushing other values to 5 if necessary,
we can store another n/9 bits using the values {3, 4}.

4A word w is equidistributed in a certain set A ⊆ {0, . . . , q − 1} if every
symbol in A appears the same number of times in w.

YAAKOBI AND SHPILKA: HIGH SUM-RATE THREE-WRITE AND NONBINARY WOM CODES 7015

This gives sum-rate

log 4 + (log 3 + 1/6)+ (log 3 + 1/9) > 5.44.

Finally, we remark that by combining our approach of a
(n, 2, 5,>3.28)-code with the (n, 2, 2,>2.98)-code of [11],
we get an (n, 4, 8,>6.26)-code.

VI. CONCLUSION

In this paper, we studied binary three-write and non-binary
WOM codes. The upper bound on the sum-rate of binary
three-write WOM code is 2 and the recently best known
construction in [24] had sum-rate 1.809. We used similar
techniques from the construction in [24] in order to achieve
sum-rate approaching 1.885. We then studied the problem of
non-binary WOM codes by using similar ideas of the three-
write WOM codes construction that reduce the number of
cells with high level. Accordingly, we gave constructions of
two-write WOM codes which improved upon the previously
best known sum-rate while attaining a reasonable block-length.
We also gave an arbitrary scheme to construct multiple writes
WOM codes and showed specific examples for three and four
writes using 8 levels.

ACKNOWLEDGEMENT

The authors sincerely thank the anonymous reviewers for
valuable comments and suggestions in improving the presen-
tation of the paper.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] A. Bhatia, A. R. Iyengar, and P. H. Siegel, “Multilevel 2-cell t-write
codes,” in Proc. IEEE Inf. Theory Workshop, Lausanne, Switzerland,
Sep. 2012, pp. 247–251.

[3] D. Burshtein and A. Strugatski, “Polar write once memory codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, Jul. 2012,
pp. 1972–1976.

[4] P. Cappelletti, C. Golla, P. Olivio, and E. Zanoni, Flash Memories.
Boston, MA, USA: Kluwer, 1999.

[5] Y. Cassuto and E. Yaakobi, “Short q-ary WOM codes with hot/cold
write differentiation,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge,
MA, USA, Jul. 2012, pp. 1391–1395.

[6] G. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[7] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. 19, no. 1, pp. 73–77, Jan. 1973.

[8] A. Fiat and A. Shamir, “Generalized ‘write-once’ memories,” IEEE
Trans. Inf. Theory, vol. 30, no. 3, pp. 470–480, Sep. 1984.

[9] F. W. Fu and A. J. H. Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[10] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write
once memory codes for multilevel flash memories,” in Proc. IEEE
Int. Symp. Inf. Theory, St. Petersburg, Russia, Jul./Aug. 2011,
pp. 2517–2521.

[11] R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy, and
J. K. Wolf, “Non-binary WOM-codes for multilevel flash memo-
ries,” in Proc. IEEE Inf. Theory Workshop, Paraty, Brazil, Oct. 2011,
pp. 40–44.

[12] P. Godlewski, “WOM-codes construits à partir des codes de Hamming,”
Discrete Math., vol. 65, no. 3, pp. 237–243, Jul. 1987.

[13] K. Haymaker and C. A. Kelley. (May 2012). “Geometric WOM codes
and coding strategies for multilevel flash memories.” [Online]. Available:
http://arXiv:1206.5762v1

[14] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[15] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes
for flash coding,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097–6108,
Sep. 2011.

[16] J. Justesen, “Class of constructive asymptotically good algebraic codes,”
IEEE Trans. Inf. Theory, vol. 18, no. 5, pp. 652–656, Sep. 1972.

[17] S. Kayser, E. Yaakobi, P. H. Siegel, A. Vardy, and J. K. Wolf, “Multiple-
write WOM-codes,” in Proc. 48th Annu. Allerton Conf. Commun.,
Control Comput., Monticello, IL, USA, Sep. 2010, pp. 1062–1068.

[18] B. M. Kurkoski, “Lattice-based WOM codebooks that allow two writes,”
in Proc. Int. Symp. Inf. Theory Appl., Honolulu, HI, USA, Oct. 2012,
pp. 101–105.

[19] B. M. Kurkoski, “Notes on a lattice-based WOM construction,” in
Proc. 34th Symp. Inf. Theory Appl., Iwate, Japan, Nov./Dec. 2011,
pp. 520–524.

[20] J. L. Massey, “Threshold decoding,” Res. Lab. Electron., Massachusetts
Inst. Technol., Cambridge, MA, USA, Tech. Rep. 410, 1963.

[21] F. Merkx, “Womcodes constructed with projective geometries,” Traite-
ment Signal, vol. 1, no. 2, pp. 227–231, 1984.

[22] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once� memory’,”
Inf. Control, vol. 55, nos. 1–3, pp. 1–19, Dec. 1982.

[23] A. Shpilka, “Capacity-achieving multiwrite WOM codes,” IEEE Trans.
Inf. Theory, vol. 60, no. 3, pp. 1481–1487, Mar. 2014.

[24] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4520–4529,
Jul. 2013.

[25] J. K. Wolf, A. D. Wyner, J. Ziv, and J. Körner, “Coding for a write-
once memory,” AT&T Bell Labs. Tech. J., vol. 63, no. 6, pp. 1089–1112,
1984.

[26] Y. Wu, “Low complexity codes for writing a write-once memory twice,”
in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, USA, Jun. 2010,
pp. 1928–1932.

[27] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3692–3697,
Jun. 2011.

[28] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Efficient
two-write WOM-codes,” in Proc. IEEE Inf. Theory Workshop, Dublin,
Ireland, Sep./Aug. 2010, pp. 1–5.

[29] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

[30] E. Yaakobi and A. Shpilka, “High sum-rate three-write and non-binary
WOM codes,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA,
USA, Jul. 2012, pp. 1386–1390.

Eitan Yaakobi (S’07-M’12) received the B.A. degrees in computer science
and mathematics, and the M.Sc. degree in computer science from the
Technion - Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California, San Diego, in 2011.

He is currently a postdoctoral researcher in electrical engineering at the
California Institute of Technology, Pasadena and he is also affiliated with
the Center for Magnetic Recording Research at the University of California,
San Diego. His research interests include information and coding theory with
applications to non-volatile memories, associative memories, data storage and
retrieval, and voting theory. He received the Marconi Society Young Scholar
in 2009 and the Intel Ph.D. Fellowship in 2010-2011.

Amir Shpilka received the B.A. and Ph.D. degrees in mathematics from the
Hebrew University, Jeruslam, Israel, in 1996 and 2001, respectively. He is
currently a faculty member at the department of computer science at the
Technion-Israel Institute of Technology, Haifa, Israel. His main research area
is computational complexity but he is also interested in broader aspects of
theoretical computer science and coding theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

