
3942 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Short Q-Ary Fixed-Rate WOM Codes for
Guaranteed Rewrites and With Hot/Cold

Write Differentiation
Yuval Cassuto, Member, IEEE, and Eitan Yaakobi, Member, IEEE

Abstract— To the body of works on rewrite codes for con-
strained memories, we add a comprehensive study in a direction
that is especially relevant to practical storage. The subject of this
paper is codes for the q-ary extension of the write-once memories
model, with input sizes that are fixed throughout the write
sequence. Seven code constructions are given with guarantees
on the number of writes they can support. For the parameters
addressed by the constructions, we also prove upper bounds
on the number of writes, which prove the optimality of three
of the constructions. We concentrate on codes with short block
lengths to keep the complexity of decoding and updates within
the feasibility of practical implementation. Even with these short
blocks the constructed codes are shown to be within a small
additive constant from capacity for an arbitrarily large number
of input bits. Part of the study addresses a new rewrite model
where some of the input bits can be updated multiple times in a
write sequence (hot bits), while other are updated at most once
(cold bits). We refer to this new model as hot/cold rewrite codes.
It is shown that adding cold bits to a rewrite code has a negligible
effect on the total number of writes, while adding an important
feature of leveling the physical wear of memory cells between
hot and cold input data.

Index Terms— Re-write codes, WOM codes, lattice tiling,
multi-level memories, flash storage, hot/cold.

I. INTRODUCTION

STORAGE media that are constrained to change their
physical stored levels in one direction have inspired a

significant body of work to allow unconstrained writes to such
media. The first work in that area introduced re-write codes
for write-once memories (WOM) [22]. In the WOM model,
k input bits are written t times to n physical cells, where
the cell levels cannot decrease between writes. The WOM
model has received a significant attention recently thanks

Manuscript received September 19, 2012; accepted January 13, 2014.
Date of publication April 18, 2014; date of current version June 12, 2014.
Y. Cassuto was supported in part by the European Union Marie Curie CIG
Grant, in part by the Intel Center for Computing Intelligence, and in part by
the Israeli Ministry of Science and Technology. E. Yaakobi was supported in
part by the ISEF Foundation and in part by the Lester Deutsch Fellowship.
This paper was presented at the 2012 IEEE International Symposium on
Information Theory.

Y. Cassuto is with the Department of Electrical Engineering, Technion–
Israel Institute of Technology, Haifa 32000, Israel (e-mail: ycassuto@ee.
technion.ac.il).

E. Yaakobi is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA (e-mail: yaakobi@
caltech.edu).

Communicated by J.-P. Tillich, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2014.2318722

to its applicability to the ubiquitous flash storage technol-
ogy [8], [27]. Alongside the principal WOM model, other
interesting re-write models have been proposed and studied
with considerable success [14], [16], [17], [26]. The starting
point of this work are observations we make on the challenges
of the WOM model with respect to its usage in realistic storage
environments.

1) Redundancy-efficient WOM constructions often have a
different k for each of the t writes. This property is hard
to accommodate in a real storage device expecting fixed-
width read/write access.

2) Long WOM codes with little structure mean exponen-
tially growing decoding complexities.

3) The generalization of binary WOM codes to q-ary cells
is not well established yet.

4) The known models assume that all user bits have the same
access characteristics, and therefore may be wasteful in
redundancy.

These challenges are the main motivators to the current work,
which addresses the challenges above as follows.

1) A fixed number of input bits in each of the t writes is
sought by all constructions.

2,3) A small number (e.g. 2, 3) of q-ary cells are used by
codes that exist for arbitrary q . The decoding and encod-
ing complexities exhibit polynomial (quadratic/cubic)
growth in q .

4) We propose constructions for codes that distinguish
between “hot” and “cold” bits in the number of updates
they allow (hot bits are updated frequently, cold bits are
updated rarely).

In the q-ary write-once memory (WOM)1 model, we are
given physical memory cells that can be at one of q ordered
discrete levels {0, . . . , q − 1}, with the restriction to only
change their levels in the upward direction [6]. Since we
clearly wish to reuse the same memory cells for multiple
writes, we need a way to allow unrestricted information
updates on these restricted cells. One way to achieve that
is by employing a WOM code [22]. A q-ary WOM code
is defined with design parameters n and k, both of which
are positive integers. The parameter k specifies the number

1Note that WOM is a misnomer for non-binary codes, because the physical
cells are no longer limited to be written only once.

0018-9448 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3943

of input information bits at each write. The parameter n is
the number of q-ary memory cells used in the WOM code
block. The objective of the WOM code is to allow as many
unrestricted k-bit writes as can be guaranteed without violating
the restrictions of the physical cells. If a WOM code can
guarantee t generations of such writes, we call it an (n, k, t)
q-ary WOM code. Once an (n, k, t) code exhausts its t writes,
the n cells can not be further reused without an external erase
operation, which is not an explicit part of the WOM model (but
does happen in practical storage media such as flash memory).
The way we specify the WOM code is through a pair of
functions: the decoding and update functions. We define the
decoding function as ψ : {0, . . . , q − 1}n → {0, . . . ,M − 1},
which maps the current levels of the n cells to one of the
M = 2k possible values of the input in the most recent
write. In the paper we will use k and M interchangeably,
assuming the relation M = 2k between them. The update
function is defined as μ : {0, . . . , q−1}n×{0, . . . ,M −1} →
{0, . . . , q−1}n, specifying how the cell levels need to change
as a function of the current cell levels and the new information
value at the input (here again the input is taken from a set
of M = 2k possible values). For the code to be a legal
WOM code, the update function μ must satisfy the following
requirements.

1) Consistency: ψ(μ(c1, . . . , cn; v)) = v.
2) Adherence: If (c′1, . . . , c′n) = μ(c1, . . . , cn; v), then ci �

c′i � q − 1 for all i = 1, . . . , n.
3) Completeness: μ(c1, . . . , cn; v) is defined and consistent

for every v∈ {0, . . . ,M − 1}.
In case the cell levels cannot change their values to a vector
μ(c1, . . . , cn; v) that satisfies these three requirements, we
assume that the update function μ returns a special symbol
indicating that the memory cannot accommodate more writes,
and needs to be erased.

The WOM model specified above is not the most general
that has been studied. The simplest generalization, used in the
Rivest-Shamir original WOM paper [22], is when the number
of possible input values M is not necessarily an integer power
of 2. Another important generalization is variable-rate WOM
codes, where the number of input bits is not constant for
all write generations. For this commonly assumed model, the
single k (or M) parameter above needs to be replaced by a
vector (k1, . . . , kt) (or (M1, . . . ,Mt)) of input sizes for the
t write generations. The sum-rate, Rsum, of a t write WOM
code, which is specified by the input sizes (M1, . . . ,Mt), is
defined to be the ratio between the total number of bits written
to the memory and the number of cells, i.e.

Rsum =
∑t

i=1 log2 Mi

n
.

In [12], Heegard showed that the sum-rate of any binary t
write WOM code is at most log2(t+1), and later, Fu and Han
Vinck [7] showed that for q levels, the sum-rate is at most

log2

(
q + t − 1

t

)

. (1)

Note that these bounds were given to the case where the input
sizes on all writes are not necessarily the same. In fact, these
bounds are achievable in the sense that it was proved that
random coding achieves capacity and in order to achieve the
bounds, the input sizes must be all different. An upper bound
on the sum-rate in case that the input sizes are the same was
studied by Heegard [12] for the binary case, where he gave
a recursive formula to calculate such a bound. However, a
similar upper bound for q levels is far from being solved,
where the only progress was recently given in [8] for the
two-write case. In this paper we will also use the normalized
sum-rate, denoted Rwrite, which is defined as

Rwrite = Rsum

t
.

While the capacity of WOM codes is well studied, finding
efficient code constructions which achieve sum-rates close to
the capacity still remains a challenge. For years, the binary
case attracted most of the attention, starting with the early
works from almost three decades ago, e.g. [5], [10], and
[21], and the more recent ones, e.g. [2], [24], [26], and
[27]. In the last few years, with the advent of multi-level
flash memories, the interest in finding code constructions for
non-binary WOM codes has significantly increased. Huang
et al. gave such codes based on error-correcting codes [13].
More code constructions were found in [9]. Kurkoski [19]
gave a first analysis of the potential construction of two-
write non-binary WOM code using two cells. This idea was
extended in [1] by Bhatia et al. to form specific WOM code
constructions for arbitrary number of writes and two cells.
Yet another extension for two writes and multiple cells was
reported by Kurkoski [18]. Another family of non-binary
WOM code constructions was recently reported by Haymaker
and Kelley in [11]. Recently, Shpilka [23] proposed a capacity
achieving construction for both binary and non-binary WOM
codes. However the code length of these construction is at
least in the order of (t/ε)t/ε (t is the number of writes and
ε is the difference from the capacity), which is a significant
drawback for any implementation of these codes. From a
practical standpoint, the variable-rate (non-fixed input size)
WOM model used in the great majority of the prior work is
far less attractive for the usage of the code in realistic storage
devices. That is because the access between a storage device
and its hosting system is specified as an interface with a fixed
number of bits. Therefore, in this paper we limit ourselves
to the more practical WOM model with fixed input sizes
M . For this model we give constructions with guaranteed
numbers of writes. Although the fixed-input WOM model is
more challenging than the general problem, for three of our
proposed constructions we are able to show optimality for
every alphabet size q .

Besides the contribution of fixed-input codes with re-write
guarantees, another important contribution of the paper is code
constructions for a whole new re-write model called hot/cold
re-writes. This model allows to jointly store on the same
physical cells bits with different update characteristics. Input
bits that are frequently accessed are called hot bits, and input

3944 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

bits that are rarely updated are called cold bits. In the new
hot/cold re-write model we construct codes that allow multiple
updates of the hot input bits and a single update of the cold
input bits. The motivation for joint hot/cold storage comes
from the need to level the wear of physical cells in non-volatile
storage media, which is achieved by hot/cold re-write codes
even in the presence of extreme write imbalances across input
data bits. We note that the problem of hot and cold data was
addressed also in [15] in the context of the data movement
problem. There, the motivation was to move data to the same
physical blocks based on its hot/cold characterization.

The rest of the paper is organized as follows. In Section II,
we study WOM codes with n = 2 q-ary cells that use
lattice tilings to obtain arbitrary numbers of guaranteed writes.
For a general k these codes are shown to be within an
additive constant from the WOM (variable-input) capacity.
The main idea behind tiling-based codes is to use the lat-
tice tiling to define the decoding function, and then build
on the algebraic structure of the lattice in finding update
functions with guaranteed number of writes for any input
sequence. We note that tilings have been previously proposed
for use in re-write codes [20], but not for the fixed-k WOM
model. While providing structured codes for a large variety
of parameters, the tiling-based constructions are not provably
optimal. Therefore, in Section III we consider the important
special case of k = 3 and construct a 2-cell code that gives
t = �2(q − 1)/3� − 1 writes, exactly matching the upper
bound we prove in Section II-D. In Section IV, we extend
the tiling-based construction to three cells. The availability
of 3-cell codes adds flexibility to the choice of a desired
tradeoff between re-write capabilities and redundancy. The
3-cell constructions also expose the structure of general tiling-
based codes, and therefore are an important step on the way
to codes for general n. In Section V, we introduce a new
re-write model that supports input bits with different update
requirements. The code is specified with two types of input
bits. Hot bits are allowed to be re-written multiple times, and
cold bits are allowed to be written at most once. The objective
of the hot/cold constructions is to allow as many writes of
the hot bits, and one write of the cold bits. An important
requirement is that the write of cold bits can be performed
anywhere in the write sequence. Several constructions with
different parameters show that differentiation between hot and
cold bits can significantly improve the re-write capabilities of
the code.

II. TILING-BASED WOM CODES WITH TWO CELLS

As a preparation to discuss WOM codes with two cells
(n = 2), we start with the simple case of re-writing using
one cell (n = 1). When there is only one cell, any new value
of the k input bits has to result in a distinct level increment
of the cell between 0 and 2k − 1. Therefore, it is clear that
the number of writes that can be guaranteed with a single cell
is t = �(q − 1)/(2k − 1)�, and no greater. The special case
of k = 1 gives t = q − 1 writes by incrementing the level
by 1 each time the input bit changes 0 → 1 or 1 → 0 [14].

Fig. 1. A WOM code that stores k = 3 bits in n = 2 cells with t = �(q−1)/2�
writes.

Since the case of n = 1 is completely characterized, we move
to discuss the case of n = 2. With n = 2 cells, it is easy
to verify that for k = 2 the maximum guaranteed number of
writes is t = q−1 and is achieved when assigning a bit to each
cell. Hence, the WOM problem becomes interesting starting
at k = 3, a case we study next.

A. Storing 3 Bits in 2 Cells: First Attempt

Recall from Section I that in an n = 2 code, the
physical content of the memory is described by a pair
(c1, c2)∈ {0, . . . , q − 1}2 of cell levels. The information con-
tent is represented by an integer number v∈ {0, 1, . . . , 2k−1};
in the case of k = 3, v∈ {0, 1, . . . , 7}. A mapping between
integers and k = 3-bit vectors is implicitly assumed. Read-
ing information is then performed by the decoding function
ψ(c1, c2), where ψ : {0, . . . , q−1}2→ {0, 1, . . . , 7}. Writing
k = 3 bits to the physical cells is specified by the update
function μ taking the current cell contents and the new
information value v′. Thus

(c′1, c′2) = μ(c1, c2, v′).

Such decoding and update functions for k = 3 are specified
in Figure 1. The numbers inside the array cells stand for
information values v in {0, 1, . . . , 7}. The coordinates marked
at the exterior of the array represent cell levels. The horizontal
coordinate is c1 and the vertical one is c2. The decoding
function ψ(c1, c2) is specified by the content of the (c1, c2)
position in the array. An update function μ(c1, c2, v′) can be
obtained from Figure 1 by defining (c′1, c′2) to be the nearest
position that contains the number v′, such that c′1 � c1 and
c′2 � c2. For example, suppose the current cell levels are
(c1, c2) = (0, 2), storing the integer 3. Then a value v′ = 7 is
written by moving the cells to levels (c′1, c′2) = (4, 3).

Each shape of area M = 8 in Figure 1 specifies the range
of possible cell levels (c′1, c′2) after a given write generation.
Since the shape for write i has both c1 � 2i and c2 � 2i ,
Figure 1 specifies an n = 2, k = 3 q-ary WOM code with
t = �(q − 1)/2�.

The code specified in Figure 1 provides re-write guarantees
by stacking 2-dimensional shapes along the main diagonal of

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3945

the (c1, c2) plane. The rest of the plane outside the diagonal
stack remains unused. We thus raise the question of whether a
better WOM code can be obtained by utilizing these remaining
cell states. The construction to follow in the next sub-section
answers this question to the affirmative.

B. 2-Cell Codes by 2-Dimensional Lattice Tilings: k = 3

To get more writes from the 2-dimensional (c1, c2) plane,
the tiling-based approach takes the following steps.

1) Tile the entire (c1, c2) plane with the same basic shape
from Figure 1.

2) Specify update functions that traverse the tiling in a way
that a certain number of writes is guaranteed for any
sequence of input-value updates.

To make the forthcoming code constructions clearer, we review
relevant fundamentals of lattice tilings for the special case of
n = 2 and k = 3.

Two-dimensional lattice tiling. k = 3.
Let the shape of area 8 used in Figure 1 be defined formally

as

S = {(x, y) | 0 � x, y � 2} \ {(2, 2)}.
Also define the center of S as the point (0, 0). A tiling of
Z

2 by S is a pair (S, T), where T is a set of locations where
centers of S copies are placed, such that the copies are disjoint
and cover the entire Z

2 plane [25]. A particularly convenient
way to obtain T is by using a lattice, in which case (S, T) is
called a lattice tiling. T is a lattice if its points can be written
as

T = {u1v1 + u2v2 : u1, u2 ∈Z},
where {v1, v2} are linearly independent vectors in R

2, which
are called the basis for T . In other words, T is the set of
linear combinations of {v1, v2} with integer coefficients. The
particular lattice we use to tile S is generated by the vectors
v1 = (2, 2) and v2 = (3,−1), that is, its generator matrix is

G =
(

2 2
3 −1

)

.

Observe that the v1 = (2, 2) vector is exactly the one used in
the diagonal stacking of Figure 1. The vector v2 = (3,−1) is
now added to the basis. The lattice T generated by G, together
with the shape S form a perfect lattice tiling, i.e., copies of S,
the centers of which are placed on the lattice points defined
by T , are disjoint, and fill the entire two-dimensional plane.
The fact that the translations of S fill the plane is seen by
calculating the size of the lattice | det(G)| = 8, and noting
that it equals the size of the shape S. Given a perfect lattice
tiling, labeling the integer points of the two-dimensional plane
is done by assigning the numbers between 0 and 7 of S to their
respective locations in copies of S translated by T .

Based on the above lattice tiling, we specify the following
code construction, which outperforms the code of Figure 1 in
the number of writes for a given q .

Construction 1: For any q , we define a 2-cell, k = 3 code as
follows.

Fig. 2. Example of lattice-tiling based Construction 1 for q = 8.

1. Decoding Function: The decoding function ψ(c1, c2)
is obtained by a lattice tiling of the two-dimensional cell-level
range {(c1, c2) | 0 � c1, c2 � q − 1} by the shape

using the generator matrix

G =
(

2 2
3 −1

)

.

2. Update Function: Given current levels (c1, c2) and input
value m, find the the new cell levels (c′1, c′2) that satisfy the
following conditions.

1) c′1 � c1, c′2 � c2.
2) ψ(c′1, c′2) = m.
3) (c′1, c′2) minimizes the value of max{c′′1 , c′′2} among all the

points (c′′1, c′′2) that satisfy conditions 1 and 2.

An example of a code obtained by Construction 1 is given in
Figure 2, for q = 8. A central step toward the establishment
of the number of writes guaranteed by Construction 1 is made
in Lemma 1 below. To help in the proof of Lemma 1 and in
subsequent results, we give the following definition.

Definition 1: For an update sequence of a 2-cell code, define
the pair (δi,1, δi,2) as the cell-level increments in write i of cell 1
and cell 2, respectively, for i = 1, 2, . . . , t . The final cell-level
pair at the end of the update sequence is

(c1, c2) =
t∑

i=1

(δi,1, δi,2).

At a high level, the algebraic structure of the lattice allows to
maintain balance between c1 and c2 increments, such that an
update sequence with δi,1 repeatedly larger than δi,2 (or vice
versa) will be replaced with a more balanced one equivalent
to it in terms of the information bits.

3946 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Lemma 1: If q = 8, then Construction 1 guarantees four
writes.

Proof: Let us consider the four writes of this code. We need
to argue that for any update sequence the update function will
reach a final level pair (c1, c2) that satisfies c1, c2 � 7. If there
exists 1 � i � 4 such that δi,1 < 2 then c1 � 7 and similarly
for c2. Hence we only need to consider the case where δi,1 = 2
for all 1 � i � 4, or δi,2 = 2 for all 1 � i � 4. From the
tile shape, increments of δi,1 = δi,2 = 2 are never needed, so
at every write at most one of δi,1 and δi,2 equals 2. Assume
without loss of generality that for all 1 � i � 4 δi,1 = 2, then
δi,2 � 1. Consider the last (fourth) write, note that instead of
the increment vector (δ4,1, δ4,2) = (2, δ4,2), we could use the
increment vector (1, δ4,2 + 3) without violating the decoding
rule. This is true because

(2, δ4,2)− (1, δ4,2 + 3) = (1,−3) = v2 − v1

and since v2 − v1 is a lattice point, the values of the points
(2, δ4,2) and (1, δ4,2 + 3) are the same. Hence the final cell
level will be in this case

(c1, c2) = (2, δ1,2)+(2, δ2,2)+(2, δ3,2)+(1, δ4,2 + 3)� (7, 7).

Now we prove the guaranteed write count of Construction 1
in the following theorem.

Theorem 2: Construction 1 guarantees t = �4(q − 1)/7�
writes.

Proof: When 7 divides q − 1, we can divide the write
sequence to periods j = 1, . . . , (q − 1)/7, each starting from
level pair c1 = c2 = 7(j − 1) and ending at level pairs
c1, c2 � 7 j . Lemma 1 guarantees that a level increase of 7
in each of c1, c2 within a period is sufficient to support four
writes in each period. Hence the total number of writes is
4(q − 1)/7. When dividing (q − 1) by 7 results in a non-zero
residue r , the theorem requires that in the last (partial) period
we will be able to write tr = �4r/7� times with increment of
up to r levels in each of c1, c2. These values of tr are listed
in the table

r 1 2 3 4 5 6
tr 0 1 1 2 2 3

,

and all of these r , tr combinations are achievable using the
diagonal stacking construction of Figure 1.

The result from Theorem 2 is that the algebraic structure of
the lattice tiling helped improving the write count from t =
�(q−1)/2� in Figure 1 to t = �4(q−1)/7� in Construction 1.

C. 2-Cell Codes by 2-Dimensional Lattice Tilings: General k

We now generalize the construction from the previous sub-
section to k > 3. For that we use a generalization of the
two-dimensional corner shape from Construction 1, which is
formalized as follows. Let a and b be positive integers such
that a > b, then the two-dimensional corner C(a, b) is given
by the set

C(a, b) = {(x, y) | 0 � x, y � a − 1} \ {(x, y) | a − b

� x, y � a − 1}.

An n-dimensional generalization of C(a, b) is used in [3] for
a different application.

Proposition 3: For all a > b > 0, a lattice tiling with the
shape C(a, b) is given by the vectors:

v1 = (a − b, a − b), v2 = (a,−b).

Proof: Elementary, see [3].
The lattice equivalence proved in the following lemma will

be later used to prove the number of writes of the generalized
2-cell lattice-based construction.

Lemma 4: The points (a−1, a−b−1) and (a−b−1, 2a−
b− 1) are equivalent (contain the same element) with respect to
the lattice v1 = (a − b, a − b), v2 = (a,−b).

Proof: Note that

(a−1, a−b−1)−(a− b − 1, 2a − b − 1)=(b,−a)=v2−v1.

For any parameters a and b such that a > b the following
is a generalization of Construction 1.

Construction 2: For any q and integer parameters a,b such
that a > b, we define a 2-cell, M = a2 − b2 code as follows.

1. Decoding Function: The decoding function ψ(c1, c2) is
obtained by a lattice tiling of the two-dimensional cell-level
range {(x, y) | 0 � x, y � q − 1} by the shape

using the generator matrix

G =
(

a − b a − b
a −b

)

.

2. Update Function: Same as in Construction 1.
Proposition 5: If c � a/b is a positive integer, and q = c(a−

1)+ a − b, then Construction 2 guarantees t = c + 1 writes.
Proof: The proof is essentially the same as the proof of

Lemma 1, which is a special case of this proposition with
a = 3, b = 1.

For 1 � i � t , let (δi,1, δi,2) be the level-increase in the
two cells. According to the shape of the corner we know that
min{δi,1, δi,2} � a − b − 1 and max{δi,1, δi,2} � a − 1.

Suppose that there exists i such that δi,2 � a − b− 1, then
the maximum level of cell 2 after t writes is at most

a − b − 1+ (t − 1)(a − 1)=(a − b − 1)+ c(a − 1)=q − 1.

The same applies to cell 1 from symmetry.
From the above we only need to consider the case where

for all 1 � i � t , δi,1 � a − b, or for all 1 � i � t ,
δi,2 � a − b. Without loss of generality, assume that for all
1 � i � t , δi,1 � a − b; then from min{δi,1, δi,2} � a − b − 1
we know that δi,2 � a − b − 1 for all 1 � i � t . Assume
that the increase at every write is the worst case (δi,1, δi,2) =
(a − 1, a − b − 1), then at the last write, we can increase the
cell levels by (δi,1, δi,2) = (a − b − 1, 2a − b − 1), which by

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3947

Lemma 4 is equivalent to (δi,1, δi,2) = (a−1, a−b−1) from
the lattice perspective (thus the decoding function gives the
desired value.). Therefore, the level of cell 1 is at most

(t − 1)(a − 1)+ (a − b − 1)=c(a − 1)+ a − b − 1=q − 1,

and the level of cell 2 is at most

(t−1)(a − b − 1)+ 2a − b − 1=c(a − b − 1)+2a − b − 1

=c(a − 1)− cb︸︷︷︸
=a

+2a−b−1=c(a − 1)+a − b− 1=q−1,

where the equality under the brace is from the definition of c.
This proves that the specified code guarantees c+ 1 writes on
q-ary cells.

Note that similarly to Construction 1, it is possible to use
any number of periods, each adding c+1 writes and c(a−1)+
a − b levels.

To obtain a k-bit WOM code using Construction 2, we
need to choose a corner shape with size that equals M = 2k .
An option for an arbitrary odd number k � 3 is to choose
a = 3 · 2 k−3

2 , b = 2
k−3

2 , (c = 3), and the resulting tile size is

M = a2 − b2 = 9 · 2k−3 − 2k−3 = 8 · 2k−3 = 2k .

The number of levels is

q = 3(a − 1)+ a − b = 11 · 2 k−3
2 − 3, (2)

and by Proposition 5 this gives t = c + 1 = 4 writes. If
we compare this code to a code that stacks corner shapes
diagonally (as shown in Figure 1 for k = 3), we get an
advantage of about 10% because the latter requires

q ′ = t (a − 1)+ 1 = 4 · (3 · 2 k−3
2 − 1)+ 1 = 12 · 2 k−3

2 − 3.

The total rate of this 4-write code (recall the definition of the
sum rate from Section I) is R = 4 · k/2 = 2k, where the
denominator 2 is the number of cells used by the code. To
compare this rate to the best possible, we now substitute q
from (2) and t = 4 in the q-ary WOM capacity expression (1),
thus getting

log2

(
q + 3

4

)

< log2

(
(11 · 2 k−3

2)4

24

)

= 4 · k − 3

2
+ 4 · log2 11− log2 24

= 2k − 6+ 13.8377− 4.585 = 2k + 3.2527.

Hence, with only two cells we can already achieve a WOM
code which is within at most an additive constant 3.2527 of
the capacity upper bound. When we normalize this gap by the
number of writes t = 4, we get that the written rate per write
per cell is at most 0.8132 bit smaller than the upper bound on
capacity. We note further that this upper bound is only known
to be achievable with variable-rate writes, so the true gap of
Construction 2 to optimality is likely to be smaller, and is still
an open question.

D. Upper Bounds on Constant-k WOM Codes

Known bounds on the sum-rate of q-ary WOM codes
over multiple writes do not restrict a constant k in all write
generations. For example, the authors of [7] derived an upper
bound by counting for a single q-ary cell all possible level-
increment sequences observed in t writes. This counting bound
however does not at all mandate the amount of information
that is input to the cell in individual writes, which in principle
can be arbitrary and variable (indeed the codes in [7] that
asymptotically meet this bound use variable rates across write
generations). To fix this limitation of known bounds, and
to have a tool to evaluate fixed-rate constructions, we now
propose an alternative bound technique that does restrict the
input sizes of individual writes. We focus here on bounds for
2-cell codes, but the same technique can be generalized to
codes with n > 2 in a straightforward manner. The core idea
is that having M possible input values in each write implies
that at least one choice will require a level increment with at
least a certain sum over the code cells.

Lemma 6: Given a 2-cell WOM code with M input values in
every write. If M > s(s+1)/2 for some integer s, then for each
write i there exists an input value such that

δi,1 + δi,2 � s.

Proof: The proof uses a simple area argument. Each of the M
input values must result in a distinct update vector (δi,1, δi,2).
The number of non-negative integer vectors that satisfy the
sum constraint δi,1 + δi,2 < s equals s(s + 1)/2. Thus since
M > s(s + 1)/2, there must be at least one update vector that
requires δi,1 + δi,2 � s.

Using Lemma 6 we can now state an upper bound on the
number of writes of a q-ary WOM code with constant input
size.

Proposition 7: Given a q-ary 2-cell WOM code with M >

s(s + 1)/2 for some integer s, the number of writes is bounded
by

t �
⌊

2(q − 1)

s

⌋

.

Proof: The sum of the levels of cell 1 and cell 2 at the end
of the write sequence is at most 2(q − 1). From Lemma 6,
there exists a worst-case write sequence in which for every
write i the sum δi,1 + δi,2 is increased by at least s. Summing
over t writes we get the desired bound.

When we substitute s = 3 in Proposition 7 we obtain the
following corollary that gives an upper bound on the number
of writes in a 2-cell code with M > 6.

Corollary 8: Given a q-ary 2-cell WOM code with M > 6,
the number of writes is bounded by

t �
⌊

2(q − 1)

3

⌋

.

Since k = 3 codes have M = 8, a strictly stronger requirement
than M > 6, it is possible to tighten the bound of Corollary 8
by a little. The resulting upper bound in the following theorem
turns out to be the tightest possible. It is shown to be
achievable in Section III.

3948 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Theorem 9: Given a q-ary 2-cell WOM code with M � 8, the
number of writes is bounded by

t �
⌈

2(q − 1)

3

⌉

− 1.

Proof: When q ≡ 0 (mod 3) or q ≡ 2 (mod 3), the right-
hand side in Corollary 8 and the right-hand side in the current
theorem are identical, and therefore the statement is trivially
true. So we only need to prove that when q ≡ 1 (mod 3),
t is strictly smaller than �2(q − 1)/3� at the right-hand side
of Corollary 8. Let the first t − 1 writes be any sequence of
value updates v1, . . . , vt−1, each of which resulting in δi,1 +
δi,2 = 3. We now consider the t-th write. For M � 8 there
are at least two distinct inputs – denoted vt and v′t – that
result in increments δt,1,δt,2 with δt,1 + δt,2 = 3. Assume by
contradiction that there exists a code with 3t = 2(q − 1).
Then after the t-th write the cell levels must satisfy c1 =
c2 = q − 1. But since there are two distinct update sequences
v1, . . . , vt−1, vt and v1, . . . , vt−1, v′t with sum increments of
3 in each write and different final levels, a unique final level
c1 = c2 = q − 1 is a contradiction.

III. OPTIMAL 2-CELL CODES FOR k = 3

In Section II we showed that lattice tiling is a useful building
block for the construction of effective re-write codes. In those
constructions, the algebraic structure of the lattice helped in
specifying update functions with guaranteed numbers of writes
for any update sequence. The main strength of the lattice-
tiling construction technique is its generality, i.e., its ability
to provide codes for different values of k and n (lattice-tiling
codes for n > 2 are discussed in Section IV). However, to that
end we do not know that lattice-tiling constructions give the
best codes for a given set of parameters k, n and q . A reason to
suspect that this may not be the case is the fact that the number
of writes guaranteed by the lattice-tiling based Construction 1
follows a slower growth of 4(q − 1)/7 compared to the upper
bound of 2(q − 1)/3 proved in Theorem 9. This gap raises
the motivation to look for improvements over lattice-tiling
constructions for important special cases of n and k. In the
following we propose such a construction for 2-cell, k = 3
codes that is in fact shown to be optimal.

Construction 3: For any q , we define a 2-cell, k = 3 code as
follows.

1. Decoding Function: The decoding function ψ(c1, c2) is
specified in two parts: the initial part, specifying ψ(c1, c2)

only for levels c1 + c2 � 6, and the periodic part, specifying
ψ(c1, c2) for the remainder of the two-dimensional cell-level
range {(c1, c2) | 0 � c1, c2 � q − 1}.
Initial part: For cell levels c1, c2 such that c1 + c2 � 6, the
decoding function is defined as:

Periodic part: For j = 1, 2, 3, . . . the level pairs (c1, c2) such
that 6 j + 1 � c1 + c2 � 6 j + 6 are decoded as specified in:

In the decoding-function plot above, the level coordinates are
given relative to the period j , i.e. 3 j − 1, 3 j, . . . , 3 j + 4. For
example, the level pair (c1, c2) = (11, 8) is decoded as the
value 4 because (11, 8) can be written as 11 = 3 j + 2 and
8 = 3 j−1 for j = 3. Finding the location pair (3 j+2, 3 j−1)

in the decoding figure gives the value 4. Note that the decoding
function ψ(c1, c2) specified above is not defined for some
(c1, c2) pairs. This fact does not raise a problem as long as the
update function never reaches an undefined level pair.

2. Update Function: As in the decoding function, the update
function is specified in two parts: the initial part for the first
two writes, and the periodic part for the remaining writes. The
shapes with solid borders in the figures below specify the update
function given the current memory state is the lower-left corner
of the shape. Thus each such shape must contain every value in
{0, . . . , 7} at least once.
Initial part: The first of the two writes of the initial part sets the
cell levels according to

Before writing the second value, we can assume to start from one
of two locations (1, 2)or (2, 1), at least one of which is accessible
from any location of the first write. The update functions for each
of the (1, 2) and (2, 1) starting locations are given (from left to
right) in

Periodic part: For the first write of the periodic part we
consider three possibilities for the starting location (c1, c2), for
every j = 1, 2, 3 . . .:

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3949

1) (3 j − 1, 3 j + 1).
2) (3 j, 3 j).
3) (3 j + 1, 3 j − 1).

These three starting locations will be updated according to the
following three plots (from left to right):
For the second write of the periodic part we assume to start in
one of the four locations

1) (3 j − 1, 3 j + 3) – bold 2 label above.
2) (3 j + 1, 3 j + 2) – bold 3 label above.
3) (3 j + 3, 3 j − 1) – bold 1 label above.
4) (3 j + 2, 3 j + 1) – bold 5 label above.

The update functions for each of these four starting locations are
now specified. For 1) and 2) (from left to right) in the plot
and for 3) and 4) (from left to right) in the plot

After the second write of the periodic part we return to the
first write of the periodic part, but with j incremented by 1. Note
that all parts of the update function satisfy the three required
properties from Section I.

1) Consistency: The information labels {0, . . . , 7} appearing
in the update-function plots are identical to the information
labels in the decoding-function plots for all (c1, c2) pairs.

2) Adherence: Transitions specified by the different shapes in
the update-function plots either leave a level unchanged or
increment it. At the end of the periodic part, no cell exceeds
level q − 1 as long as 3 j + 4 � q − 1.

3) Completeness: In every shape in the update-function plots
there is at least one instance of every information label
{0, . . . , 7}.

Theorem 10: Construction 3 guarantees t = �2(q−1)/3�−1
writes.

Proof: Before counting the number of writes, an important
preliminary step of the proof is to prove the continuity between
the different parts of the update function of Construction 3.
Continuity means that every possible end location of the
update function in one write is considered as a start location for

TABLE I

START LOCATIONS AND WORST-CASE END LOCATIONS OF

CONSTRUCTION 3’S UPDATE FUNCTION

the following write. We demonstrate the continuity by Table I
summarizing the four phases of the update function (initial
write 1, initial write 2, periodic write 1, periodic write 2). For
each phase, Table I lists the possible start locations specified
in Construction 3, and the worst-case end locations after the
write. By worst case we mean that at least one of the listed
end locations is reachable from every possible end location by
only incrementing levels or leaving them unchanged. In each
row, we need to verify that every end location appears in the
list of start locations of the next row. Similarly, the periodicity
of the construction requires that the end locations of periodic
write 2 have corresponding start locations in periodic write 1.
Examining Table I, the continuities from initial write 1 to
initial write 2 and from periodic write 1 to periodic write 2 are
obvious (the right column of row initial write 1 is equal to the
center column of row initial write 2, and same for the periodic-
write rows). Continuity from initial write 2 to periodic write
1 is established by substituting j = 1 in the start locations of
the latter. Finally, continuity between periodic write 2 back to
periodic write 1 is obtained by substituting j ← j + 1 in the
start locations of the latter.
Now that Construction 3 is shown to be correct, we move to
count the number of writes.

Case 1: q ≡ 2 (mod 3) (This case corresponds to complet-
ing an integer number of full periods.). After periodic write 2
of period j , the worst-case cell level is 3 j + 4. Writing j full
periods is possible if 3 j + 4 � q − 1. Therefore, when q ≡ 2
(mod 3) the number of guaranteed full periods is an integer
j∗ = (q − 5)/3. Since each period has two writes, and the
initial part contributes two more writes, in total we have

t = 2 j∗ + 2 = 2(q − 2)/3.

3950 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Fig. 3. Additional write after the j∗-th period with one extra level.

It is easy to verify that 2(q − 2)/3 = �2(q − 1)/3� − 1 when
q ≡ 2 (mod 3).

Case 2: q ≡ 0 (mod 3). In this case we complete j∗ =
�(q−5)/3� = (q−6)/3 full periods, with level q−1 remaining
unused. We claim that the update function can be extended in
this case to have one more write beyond the j∗ periods. This
can be seen in Figure 3 showing that starting from the end of
the j∗-th period, at one of the locations marked with bold 6, 4
and 7, any value in {0, . . . , 7} can be reached with one extra
level.

So overall for this case we have 2 writes of the initial part,
2 j∗ writes in the periodic part and 1 write afterward. These
sum up to

t = 2 j∗ + 3 = 2(q − 6)/3+ 3 = 2q/3− 1.

It is easy to verify that 2q/3 − 1 = �2(q − 1)/3� − 1 when
q ≡ 0 (mod 3).

Case 3: q ≡ 1 (mod 3). In this case, similarly to case 2,
we can have j∗ = �(q − 5)/3� full periods, only now with
one more unused level at the end. So it is clear that we can
have at least as many writes as in case 2. In total

t = 2 j∗ + 3 = 2(q − 7)/3+ 3 = 2(q − 1)/3− 1.

It is trivial that 2(q−1)/3−1 = �2(q−1)/3�−1 when q ≡ 1
(mod 3).

Note that t in Theorem 10 matches the upper bound in
Theorem 9, thus proving the optimality of Construction 3. The
interesting implication from this optimality is that a weaker
constraint used by the upper bound of Section II-D is actually
equivalent, at least for the parameters in question, to a much
stronger requirement from a real code. In the upper bound, the
code was required to accommodate updates with only the sum
δi,1 + δi,2 being bounded from below by some constant. In a
real code, however, one can imagine a worst-case/adversarial
update sequence that is not only growing in the sum c1+c2, but
also causes imbalance resulting in one of c1, c2 overflowing
prematurely. The success of Construction 3 is therefore its
ability to perfectly balance the increments in c1 and c2 in a
t-write cycle, for all update sequences. While Construction 3
addresses the specific case of k = 3, the same balancing
techniques with shapes of different sizes can yield codes for
other values of k.

IV. TILING-BASED WOM CODES WITH THREE CELLS

As the constructions of Section II show, storing k bits
in two cells can be done with good two-dimensional tilings
with shapes of size 2k , and specifying the encoding and

decoding functions. Our objective in this section is to extend
these constructions to three cells. The motivation is twofold.
The first is to improve the storage efficiency and flexibility
beyond 2-cell codes. The second is to study 3-cell codes as a
gateway to understanding the general n-cell coding problem.
Recall that in the 2-cell constructions we considered a two-
dimensional array and if k bits were stored, shapes of size 2k

were positioned on this two-dimensional array such that

1) The shapes do not overlap.
2) The transition from one shape to another is restricted to

only advance in the positive direction of each dimension.

An efficient code was obtained in Construction 2 by finding
a shape that perfectly tiles the two-dimensional array – the
corner shape. Going beyond two-dimensions, we use an exten-
sion of the two-dimensional corner shape for three and higher
dimensions. This shape is known as the n-dimensional chair,
and was recently studied in [3] for correcting asymmetric
errors. Formally, an n-dimensional chair Sn,a,b ⊆ R

n , where
a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn)∈R

n , 0 < bi < ai

for each i , 1 � i � n, is an n-dimensional a1 × a2 × · · · × an

box from which an n-dimensional b1× b2× · · ·× bn box was
removed from one of its corners.

Sn,a,b = {(x1, x2, . . . , xn)∈R
n

: 0 � xi < ai , and there exists a j,

1 � j � n, such that x j < a j − b j }.
In this work, we will only consider the special case of
three dimensions where a = (a1, a2, a3) = (a, a, a),
b = (b1, b2, b3) = (b, b, b)∈Z

3, for two positive integers
a, b such that 0 < b < a. Hence, as the special case of Sn,a,b
we define S3,a,b to be the three-dimensional discrete shape
with a and b replaced by fixed scalars a and b.

S3,a,b={(x1, x2, x3)∈Z
3 : 0� xi < a, and there exists a j,

1� j � 3, such that x j < a − b}.
A construction of a lattice tiling � for the n-dimensional

chair was recently studied in [3] and is given by the following
generator matrix

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 −b2 0 0 · · · 0
0 a2 −b3 0 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 an−2 −bn−1 0
0 0 · · · 0 an−1 −bn−b1 0 · · · 0 0 an

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Note that | det(G)| =∏n
i=1 ai −∏n

i=1 bi , which is the volume
of the n-dimensional chair.

For our special-case three-dimensional construction with
equal ai and bi , the generator matrix is given by

G3 =
⎛

⎝
a −b 0
0 a −b
−b 0 a

⎞

⎠ ,

| det(G3)| = a3 − b3, and we let �3 be the lattice generated
by the matrix G3. We denote the first, second, third row of
the matrix G3 by g1, g2, g3, respectively. For the rest of this

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3951

section we assume that a
b = c is a positive integer greater

than one.
Since the size of the three-dimensional chair is M3 =

a3 − b3, we assume that there is a mapping ψ : Z
3 →

{0, 1, . . . ,M3 − 1}, which simply assigns to each point
(i1, i2, i3)∈Z

3 a label such that lattice translations of the chair
shape preserve the labeling (these labels are called the coset
numbers in the lattice terminology). This mapping defines the
decoding function.

Let us now describe the idea how the update function works.
Our main goal is to show that in every T = c3−1

c−1 = 1+ c+ c2

writes, the maximum cell level increases by at most

�3 = T (a − 1)− b

levels. To show this, we simply prove that on the first T
writes the maximum cell level is at most �3. Then, the same
arguments are applied for the following cycles of T writes.

On each write, assume that the point i = (i1, i2, i3)
represents the current cell levels and a new symbol
m ∈ {0, 1, . . . ,M3 − 1} is received. In general, by forming
the three-dimensional chair S3,a,b shifted by the vector i ,
it is always possible to increase the cell levels by a vector
d = (δ1, δ2, δ3) such that ψ(i + d) = m and d is a point in
the three-dimensional chair, S3,a,b. Hence, from the structure
of S3,a,b, 0 � δ� � a − 1 for all 1 � � � 3, and there exists
1 � j � 3 such that δ j � a − b − 1. This update rule will
be called the basic update rule and the encoder will use it on
most of its writes.

Note that on each write every cell increases its level by at
most a − 1 levels and there is at least one cell whose level
increase is at most a−b−1. In order to show that in every T
writes the increase in the maximum cell level is at most �3,
we will show that in these T writes, every cell increases its
level at least once by at most a − b − 1.

We now describe formally the update and decoding func-
tions of the 3-cell construction for a cycle of T writes.

Construction 4: For q = �3 + 1, we define a (3, k =
log2(M3), T) WOM code as follows.

1. Decoding Function: The decoding functionψ(c1, c2, c3) is
obtained by a lattice tiling of the three-dimensional chair S3,a,b

using the generator matrix G3.
2. Update Function: On the j -th write, 1 � j � T , we let

i j = (i j,1, i j,2, i j,3) be the cell-level vector at the beginning
of the j -th write and m j ∈ {0, 1, . . . ,M3 − 1} is the received
message. On each write, the increment vector according to the
basic update rule is denoted by d ′j = (δ′j,1, δ′j,2, δ′j,3). Our goal
is to find the actual increment vector to the cells, which we
denote by d j = (δ j,1, δ j,2, δ j,3).

On the first c writes we simply apply the basic update rule,
that is, d j = d′j for 1 � j � c. On the (c + 1)-th write, we
apply the following rules. For � = 1, 2, 3, we define

wc+1,� =
⌊
(c + 1)(a − 1)− (ic+1,� + δ′c+1,�)

b

⌋

.

The goal of the variable wc+1,� is to indicate, in case that the basic
update rule is applied, how far the cell level is from the maximum

increase (c+ 1)(a− 1), normalized by b. The increment vector
dc+1 is determined as follows.

1) If there are �1, �2 ∈ {1, 2, 3}, �1 = �2, and
wc+1,�1,wc+1,�2 � 1, then dc+1 = d ′c+1.

2) Otherwise, there exists �∈ {1, 2, 3} such wc+1,� � c + 1
and set dc+1 = d ′c+1 + g�.

On the following c2 − 1 writes, simply apply the basic update
rule again, and so d j = d ′j for c + 2 � j � c2 + c = T − 1.
On the the T -th write, we define, as in the (c + 1)-th write for
� = 1, 2, 3,

wT ,� =
⌊

T (a − 1)− (iT ,� + δ′T ,�)
b

⌋

.

The increment vector dT is determined as follows.
1) If for � = 1, 2, 3, wT ,� > 0, then dT = d ′T .
2) Otherwise, there exists � such wT ,� = 0. If wT ,�−1 � c+1

then we set dT = d ′T + g�−1, and else we set dT = d ′T +
g�−1 +

(
c −

⌈
wT ,�−1−1

c

⌉)
g�−2.

The indices of the vectors g1, g2, g3 are calculated modulo 3
where the residues are 1, 2, or 3. For example, if � = 1 then
g�−1 = g3 and g�−2 = g2.

The goal in the update function is to balance the increase of
all cell levels. This is done in two stages. The first stage is on
the (c+ 1)-th write, after which it is guaranteed that there are
at least two cells whose levels are at most (c+ 1)(a− 1)− b.
This property is achieved by one of the options 1 and 2 listed
above for the (c + 1)-th write. In option 1, it is checked if
there are already two cells with this property, in which case the
basic update rule can be applied as is. Otherwise, in option 2
there must be (to be proved later) one cell whose level is
small enough to allow a large increase in its level, while at
the same time helping another cell gain at most a − b − 1
levels. The second stage is on the T -th write. On this write
there are already two cells whose levels will be at most �3 =
T (a − 1) − b if the basic increment vector d ′T is used. For
the update function to be correct, we need this property for
all three cells. In option 1 of the T -th write above indeed all
three cells have this property, and we can use the basic update
rule without change. Otherwise, in option 2 we assume the
third cell does not satisfy this property. In that case we try
to find an update vector that guarantees a small increment to
the third cell, while keeping the other two still within the �3

limit. The two cases in option 2 of the T -th write represent a
direct compensation by a row-vector of G3 in the former case,
or by a linear combination of two row-vectors of G3 in the
latter case. We will prove the correction of these operations
in the next lemmas.

Lemma 11: If the condition in option 1 of the (c+ 1)-th write
does not hold, then the condition in option 2 holds. Furthermore,
dc+1 � 0.

Proof: If the condition in option 1 of the (c + 1)-th write
holds, then dc+1 = d ′c+1 � 0 because we apply the basic
update rule. If the condition in option 1 does not hold, let us
show that there exists �∈ {1, 2, 3} such that wc+1,� � c + 1.
Without loss of generality, assume that wc+1,2 = wc+1,3 = 0.
This implies that none of the cells 2, 3 had an increment

3952 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

smaller than a−b in the preceding writes or in the current write
with the basic update rule. Since on every write the increment
level of at least one of the cells is at most a − b − 1, we get
that for 1 � j � c,

a − b � δ j,2, δ j,3 � a − 1, δ j,1 � a − b − 1

and also

a − b � δ′c+1,2, δ
′
c+1,3 � a − 1, δ′c+1,1 � a − b − 1.

Therefore,

ic+1,1 + δ′c+1,1 =
c∑

j=1

δ j,1+δ′c+1,1 � (c+1)(a−b−1) (3)

and

wc+1,1 =
⌊
(c+ 1)(a − 1)− (ic+1,1 + δ′c+1,1)

b

⌋

� b(c+ 1)

b

= c + 1.

In particular, we have that δ′c+1,2 � a − b and thus δc+1,2 =
δ′c+1,2 − b � a − 2b � 0.

Lemma 12: After the (c+ 1)-th write, the level of at least two
cells is at most (c + 1)(a − 1)− b.

Proof: Assume the condition in option 1 of the (c + 1)-th
write holds, and let �1, �2 be such that wc+1,�1,wc+1,�2 � 1.
Then, for the �1-th cell we get

wc+1,�1 =
⌊
(c + 1)(a − 1)− (ic+1,�1 + δ′c+1,�1

)

b

⌋

� 1,

or

(c + 1)(a − 1)− (ic+1,�1 + δ′c+1,�1
) � b

and thus after the (c+ 1)-th write, the level of the �1-th cell,
ic+1,�1 + δc+1,�1 , satisfies

ic+1,�1 + δc+1,�1 = ic+1,�1 + δ′c+1,�1
� (c + 1)(a − 1)− b.

Similarly, we get ic+1,�2 + δc+1,�2 � (c+ 1)(a− 1)− b. If the
condition in option 1 does not hold, assume without loss of
generality that wc+1,2 = wc+1,3 = 0 and wc+1,1 � c+ 1. The
level of cell 1 after this write is given by ic+1,1 + δ′c+1,1 + a.
As in the proof of Lemma 11 for inequality (3) we get

ic+1,1 + δ′c+1,1 + a � (c+ 1)(a − b − 1)+ a

= (c + 1)(a − 1)− bc− b + a = (c + 1)(a − 1)− b.

For the level of cell 2, we simply get

ic+1,2 + δ′c+1,2 − b � (c + 1)(a − 1)− b.

Lemma 13: On the T -th write, we have dT � 0.
Proof: As in the proof of Lemma 11, if the condition in

option 1 holds, then dT = d ′T � 0. Assume the condition
in option 1 does not hold. According to Lemma 12, after the
(c+1)-th write, the level of at least two of the cells is at most
(c+1)(a−1)−b, and without loss of generality assume these
are cells 1, 2. Since δ j,1, δ j,2 � a − 1 for c+ 2 � j � T − 1
and δ′T ,1, δ′T ,2 � a−1, we have that wT ,1,wT ,2 � 1. Therefore,

if the condition in option 1 of the T -th write does not hold,
then wT ,3 = 0. Hence in every write between the (c + 2)-th
write and the T -th write, the increment level of either cell 1 or
cell 2, according to the basic update rule, is at most a−b−1.
Thus we get that

wT ,1 + wT ,2

=
⌊

T (a − 1)− (iT ,1 + δ′T ,1)
b

⌋

+
⌊

T (a − 1)− (iT ,1 + δ′T ,1)
b

⌋

� 2 + c2.

In case wT ,2 � c + 1, we have

dT = d ′T + g2 = (δ′T ,1, δ′T ,2 + a, δ′T ,3 − b) � 0,

since δ′T ,3 � a−b. The proof that dT � 0 in case that wT ,2 <

c + 1 is also very similar.
Finally, we can prove the re-write properties of Construc-

tion 4 in the next theorem.
Theorem 14: On the first T writes, the increase in the maxi-

mum cell level is at most

�3 = T (a − 1)− b.

Proof: We will show that after T writes, the level of every
cell is at most T (a − 1)− b. Assume the condition in option
1 of the T -th write holds. Then, for the �-th cell, � = 1, 2, 3,
we get that

wT ,� =
⌊

T (a − 1)− (iT ,� + δ′T ,�)
b

⌋

� 1,

or

T (a − 1)− (iT ,�1 + δ′T ,�1
) � b

and hence the level of the �-th cell satisfies

iT ,� + δT ,� = iT ,� + δ′T ,� � T (a − 1)− b.

Now, assume that the condition in option 1 of the T -th
write does not hold, and without loss of generality assume
that wT ,3 = 0. According to Lemma 12 and as was shown
also in the proof of Lemma 13, we necessarily have that
wT ,1,wT ,2 � 1 and wT ,1 + wT ,2 � 2 + c2. We consider the
two cases of this option. In case that wT ,2 � c + 1, then the
levels of the three cells are given by

(iT ,1 + δ′T ,1, iT ,2 + δ′T ,2 + a, iT ,3 + δ′T ,1 − b).

According to wT ,1 � 1, we have iT ,1 + δ′T ,1 � T (a − 1)− b.
According to wT ,2 � c + 1, we have

iT ,2 + δ′T ,2 + a � T (a − 1)− (c + 1)b + a = T (a − 1)− b.

Lastly, we have that iT ,3 + δ′T ,1 − b � T (a − 1)− b.
The remaining case is when wT ,2 < c+1, and so the levels

of the three cells are given by

c1 = iT ,1 + δ′T ,1 +
(

c −
⌈

wT ,2 − 1

c

⌉)

a,

c2 = iT ,2 + δ′T ,2 + a −
(

c −
⌈

wT ,2 − 1

c

⌉)

b,

c3 = iT ,3 + δ′T ,1 − b.

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3953

TABLE II

NUMERICAL RESULTS OF THE 3-CELL CONSTRUCTION

If wT ,2 = 1 then since wT ,1+wT ,2 � 2+c2, we have wT ,1 �
c2 + 1 and thus

c1 = iT ,1 + δ′T ,1 + ca � T (a − 1)− (c2 + 1)b + ca

= T (a − 1)− b,

c2 = iT ,2 + δ′T ,2 + a − cb � T (a − 1)− b + a − cb

= T (a − 1)− b,

c3 = iT ,3 + δ′T ,1 − b � T (a − 1)− b.

If 2 � wT ,2 < c+1 then since wT ,1+wT ,2 � 2+ c2, we have
wT ,1 � c2 − c + 2 and thus

c1= iT ,1+δ′T ,1+(c−1)a � T (a−1)−(c2−c + 2)b+(c−1)a

= T (a − 1)− 2b,

c2= iT ,2+δ′T ,2 + a−(c− 1)b � T (a − 1)− 2b + a − cb + b

= T (a − 1)− b,

c3 Z = iT ,3 + δ′T ,1 − b � T (a − 1)− b.

This completes the proof.
As a result of Theorem 14, we get that the sum-rate is given

by

Rsum= T · q−1

�3
· log(a3−b3)

3
= T (q−1)

T (a−1)−b
· log(a3−b3)

3
.

When we normalize the sum-rate by the number of writes T ,
and substitute T = 1+ c + c2 we get

Rwrite = (q − 1)

(1+ c + c2)(a − 1)− b
· log(a3 − b3)

3
.

Table II gives some numerical examples of the 3-cell
Construction 4. The value of c is the ratio between a and
b, i.e., c = a/b. For one cycle of T writes the number of
levels, q , is q = �3 + 1, and M3 is the number of possible
values written on each write, which is the size of the three-
dimensional chair, M3 = a3−b3. The write rates Rwrite listed
in Table II are calculated as

Rwrite = log(M3)

3
.

Finally, the value log
(q+T−1

T

)
/T in the last column is the rate

upper bound of [7] normalized by the number of writes (and
hence an upper bound on Rwrite). Note that this upper bound
is for the case where non-equal rate writes are allowed, and
therefore may not be the true limit for fixed-rate codes like

those of Construction 4. We further note that in general, the
results are better when the number of writes is small. Thus,
most of the results (with the exception of the last row) are
given for c = 2. In this case, a = 2b, T = 7, �3 = 7(2b−1)−
b = 13b− 7, and M3 = 7b3. Then the per-write rate is given
by

Rwrite = log(M3)

3
c=2= log(7b3)

3
= log b + 0.93,

while the upper bound is

1

T
log

(
�3 + T

T

)
c=2= 1

7
log

(
13b

7

)

.

Hence this upper bound is no greater than

1

7
log

(
13b

7

)

<
1

7
log

(
(13b)7

7!
)

= log b + 1.94.

Therefore, the WOM codes we achieve for three cells and
c = 2 are within at most an additive constant of 1.01 bits per
write per cell from the upper bound. A similar analysis can
be derived for other values of c, however the additive constant
will be larger. This is demonstrated in the last row of Table II.

Another approach to evaluate our construction is by compar-
ison to bounds on fixed-rate codes in the form of Theorem 9
(Section II), generalized to 3-cell codes. The resulting compar-
ison indeed tightens the gaps somewhat, but we skip the exact
numerical values to keep the presentation cleaner. In terms
of comparing to known codes, unfortunately, the number of
such constructions is limited, especially for a large number of
writes. One example where we can compare the results is for
the 7-write code at the top row of Table II, with q = 7 levels
and a write rate of 0.93 (sum-rate of 6.55), while a known
construction in [9] achieves a 7-write code with a smaller
rate and only with q = 8 (i.e., one more level than in our
construction).

V. JOINT STORAGE OF “HOT” AND “COLD” BITS

We now move to study a new type of WOM codes, where
part of the input bits are allowed to be written multiple times,
while another part are only allowed a single write. The former
are called hot bits and the latter are called cold bits. The
motivation for this model comes from the need of solid-state
storage devices to level the wear between frequently and rarely
written data blocks, which requires to jointly store them on the
same physical cells. To the best of our knowledge, this type
of problem has not been addressed by coding before.
In the proposed hot/cold re-write model, we look for codes
that provide the following features.

1) Store k1 hot bits and k2 cold bits on n cells.
2) Each cold bit can be written at most once.
3) The k1 hot bits can be written (jointly) as many times as

possible.
4) Cold-bit writes can be performed anywhere in the write

sequence, and in any order.
5) Any bit can be read anytime.

In the remainder of the section we construct codes that address
the above features of the hot/cold model. We note that hot/cold

3954 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

Fig. 4. Code for hot+cold bit in 1 cell with �q/2� total writes (q = 8 in
the plot).

codes use a different counting of writes than WOM codes.
We no longer have the notion of a write generation, but rather
the rewrite capabilities are defined on subsets of the hot and
cold stored bits.

A. One-Cell, 1-Hot Bit and 1-Cold Bit Storage

To understand the hot/cold model, we start with a simple
example. In Figure 4 we show the level transition diagram
of a 1-cell code for one hot bit and one cold bit. The stored
information bits appear at the bottom of the figure, the right
of which (underlined) is the hot bit. The integers inside the
state nodes are the physical levels of the cell. Arrow lines
specify level changes upon re-writes of the hot bit (solid lines
represent hot-bit flips, and dashed lines represent re-writing of
the same value to the hot bit). The left part of the diagram
(even-numbered levels) is for a 0 value in the cold bit, and
the right part (odd-numbered levels) is for a 1 value. When a
1 value is written to the cold bit, we move from the current
state on the left to its “twin” state on the right side. This
action flips the cold bit to 1 but leaves the hot bit unchanged.
Once on the right part of Figure 4, the remaining writes of
the hot bit are performed on that side, without reverting to the
left part again in the write sequence (hence the restriction to
have at most one write of the cold bit). Extending Figure 4
upward for a cell with q levels allows a total of t = �q/2�
writes, including the one write of the cold bit. This is better
than the standard n = 1, k = 2 WOM code that gives only
t = �(q − 1)/3� writes. It also gives one more write than
an n = 1, k = 2 floating code [14] when q is even. Note
that, as required by the hot/cold model, the t writes of the
hot and cold bit can be performed in any order (moving to
the right part of the diagram upon a cold write can be done
at any level). The following proposition states that the code
described in Figure 4 is optimal.

Proposition 15: Any 1-cell code that stores one hot bit and
one cold bit guarantees at most �q/2� total writes.

Proof: Let a 1-hot and 1-cold bit code characterized by a
decoding function D : {0, 1, . . . , q − 1} → {0, 1}2, where for
all 0 � c � q − 1, D(c) = (bc,0, bc,1), and bc,0, bc,1 are the
values of the cold, hot bit, respectively.
Let S0, S1 be the sets of all cell values that decode the cold
bit to value 0, 1, respectively. That is,

S0 = {c∈ {0, 1, . . . , q − 1} : bc,0 = 0},
S1 = {c∈ {0, 1, . . . , q − 1} : bc,0 = 1}.

Fig. 5. Decoding function: 1-hot bit and 1-cold bit 2-cell code.

Assume first that q is even. If |S0| � |S1| then |S0| � q/2.
Since 0∈ S0, we can have at most q/2 − 1 writes of the hot
bit. That is q/2 including the cold-bit write. If |S1| < |S0|,
then |S1| � q/2−1. Now, suppose on the first write we update
the cold bit and move to a level in S1. Then since there are
at most q/2 − 2 additional cell levels in S1, the number of
hot-bit writes is at most q/2 − 2. That is q/2 − 1 writes in
total.

Now, assume that q is odd. If S0 � (q−1)/2 then as before,
the number of hot-bit writes is at most (q − 1)/2− 1, and the
total at most (q − 1)/2 = �q/2�. Otherwise, S0 � (q + 1)/2
and S1 � (q − 1)/2 and the number of hot-bit writes after a
cold-bit write is at most (q−1)/2−1. Again adding to a total
of (q − 1)/2 = �q/2�.

B. Two-Cell, 1-Hot Bit and 1-Cold Bit Storage

Moving beyond 1-cell codes given in the preceding sub-
section, we now consider hot/cold codes that use multiple
cells. This will allow better utilization of the memory cells
by codes that make the cost of storing the cold bits negligible
(in the code of Figure 4 the existence of the cold bit decreased
the number of writes to the hot bit by a significant factor 2,
compared to a 1-cell code with one hot bit.).

The first construction is now given. As in the 2-cell codes
of earlier sections, the decoding function will be specified by
a two-dimensional array. The coordinates at the exterior of the
array represent physical-cell levels, and the integers within the
array are the information values of the stored bits. In particular,
for Construction 5 below the information value 0 stands for
00, 1 stands for 01, 2 stands for 10 and 3 stands for 11. The
underlined least-significant bit is the hot bit, and the most-
significant bit is the cold bit. Note that for re-writing of the
hot bit the code needs to support the transitions

0→ {0, 1}, 1→ {0, 1}, 2→ {2, 3}, 3→ {2, 3}.
In addition, for the write of the cold bit the code should support
a single transition of the form 0→ 2 or 1→ 3.

Construction 5: For any q , we define a 2-cell, 1-hot bit and
1-cold bit code as follows.

1. Decoding Function: Shown pictorially in Figure 5.
Formally, denote the value of the hot bit by b0 and the value

of the cold bit by b1. The levels of the two cells are denoted
by c1 and c2. The decoding function D(c1, c2) = (b0, b1) (as
specified in Figure 5) is given as:

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3955

1) D(0, 0) = (0, 0).
2) For all (c1, c2) = (0, 0),

a) b1 = (c1 + c2) mod 2.
b) If c1 > c2 then b0 = 0 and if c1 � c2 then b0 = 1.

2. Update Function: The update function is denoted by
E(c1, c2, i) = (c′1, c′2). The current memory state is (c1, c2)

and the bit index to be changed is i ∈ {0, 1}. We assume
here that b0 changes at most once, and when a bit is writ-
ten, its value changes (otherwise, there is no need to change
the memory state). Furthermore, c′1 � c1, c′2 � c2.
The following rules constitute the update function.

1) If i = 0 (cold-bit write), then (c′1, c′2) = (c1, c2 + 2).
2) If i = 1 (hot-bit write), then apply the following rules:

a) If c1 = c2 = 0, then (c′1, c′2) = (1, 0).
b) If c1 = c2 > 0, then (c′1, c′2) = (c1, c2 + 1).
c) If c1 = c2 + 2, then (c′1, c′2) = (c1, c2 + 1).
d) If c1 = c2 + 1, then (c′1, c′2) = (c1 + 1, c2).
e) If c2 > c1, then (c′1, c′2) = (c1 + 1, c2).

The rules become clearer when consulting Figure 5. The five
cases in item 2 above correspond to the following, respectively.

a) 0 at the lower left corner changing to 1 by moving right.
b) 2 changing to 3 by going up one level.
c) 0 changing to 1 by going up one level.
d) 1 changing to 0 by going right one level.
e) 3 changing to 2 (or 2 changing to 3) by going right one level.

The following lemma will help proving properties of Con-
struction 5.

Lemma 16: the following hold throughout the update
sequence of Construction 5.

1) When b0 = 0, the hot bit b1 can be updated by moving
(c1, c2) to a state of the form (x + 1, x) or (x + 2, x).

2) When b0 = 1, the hot bit b1 can be updated by moving
(c1, c2) to a state of the form (x, x) or (x, x + 1).

Proof: Immediate from Figure 5.
Now we prove the re-write properties of Construction 5.
Proposition 17: The number of writes guaranteed by

Construction 5 is t = 2(q − 1) − 1, including the possible
rewrite of the cold bit.

Proof: From Lemma 16 part 1, if the cold bit never
changes its value then writing stops when the memory state is
(q−1, q−2), after alternating +1 changes in c1 and c2. Thus,
there are q−1+q−2 = 2(q−1)−1 writes. From Lemma 16
part 2, if the cold bit changes its value, then writing stops
when the memory hits state (q− 1, q− 1), after q− 1+ q− 3
alternating +1 changes in c1 and c2 (for the hot bit) and a
single +2 change in c2 (for the cold bit). Thus, in that case
too there are q − 1+ q − 3+ 1 = 2(q − 1)− 1 writes.

Note that a trivial upper bound on the number of writes is
2(q−1). However, it is possible to show that the construction
is strictly optimal.

Proposition 18: Any 2-cell code for 1-hot bit and 1-cold bit
guarantees at most 2(q − 1)− 1 writes.

Proof: Assume to the contrary that there exists a code that
guarantees 2(q − 1) writes. Let us consider 2(q − 1) − 1
writes where only the hot bit b1 changes its value. Then, the

memory state is either (q − 1, q − 2) or (q − 2, q − 1), and
b1 = 1. Without loss of generality, assume it is the first option.
Therefore, the decoded value of the memory state (q−1, q−2)
is (b0, b1) = (0, 1). On the following write, both a cold-bit
write and a hot-bit write are legal, so the two-bit value may
change to either (0, 0) or (1, 1). But there is only one memory
state (q−1, q−1) that is accessible from (q−1, q−2), which
leads to a contradiction.

Proposition 17 proves that a 2-cell code for one hot bit and
one cold bit can give 2(q−1)−1 guaranteed total writes. When
the same two cells are used to re-write only a hot bit (without
the cold bit), the number of writes is 2(q − 1), just one more
than in the 1-hot, 1-cold setting. Consequently, the addition of
a cold bit to the code has a negligible effect on the total number
of writes. It is thus a very attractive property that adding cold
bits to re-write codes comes with no additional storage cost,
and while maintaining essentially the same re-write properties.

It is also academically interesting to compare the 1-hot,
1-cold Construction 5 to 2-cell floating codes with 2 input
bits introduced in [14]. The common property of the two
codes is that each write is an update of one of two stored
bit. The difference is that floating codes do not distinguish
between hot and cold bits, and allow any sequence of t 1-bit
updates. The number of writes guaranteed by 2-cell floating
codes is �3(q − 1)/2�. As a result, Construction 5 shows that
by designating one of the input bits as a cold bit, it is possible
to increase the number of writes by 33%.

C. Multiple Cold Bits and a Single Hot Bit

In this sub-section we would like to extend the 2-cell
hot+cold Construction 5 of the previous sub-section such that
it will be possible to store multiple cold bits and a single hot
bit. Such codes address the common case in practice where
the hot bits represent a small fraction of the total storage
space.

A simple idea for multiple cold bits code is to take k copies
of Construction 5, that is, using 2k cells in total. In every pair
of cells, a single cold bit and a single hot bit are stored. Since
we only need to store a single hot bit, we take its value to be
the sum modulo 2 of the k hot bits of the individual copies.
Thus, it is possible to store a single hot bit and k cold bits in
n = 2k cells with k(2q−3) = n(q−1)−k total writes. Despite
the simplicity of this idea, using two cells for every cold bit is
too wasteful. Next we show a construction for k cold bits and
1 hot bit using as few as n = k+1 cells. Let us denote the cell
levels by c0, c1, . . . , ck . The construction builds on the idea
just presented, but instead of using k copies of a 2-cell code,
we use the cell c0 as a shared cell to all the other k cells.
That is, every two cells of the form (c0, ci) for 1 � i � k,
generate a code of a single hot and a single cold bit. We
denote the hot bit by bk and the cold bits by b0, b1, . . . , bk−1.
The decoding and update functions of Construction 5 will be
used in the following construction, and are denoted therein by
D(r, s) and E(r, s,m), respectively.

Construction 6: For any q and k, we define a (k + 1)-cell,
1-hot bit and k-cold bits code as follows.

3956 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

1. Decoding Function: The decoding function D∗(c0,

c1, . . . , ck) = (b0, b1, . . . , bk) is defined as follows.
1) bk = (∑k

i=0 ci) mod 2.
2) For 0 � i � k − 1, bi = D(c0, ci+1)0 (the first bit of the

decoded pair cf. the decoding function of Construction 5).
2. Update Function: The update function E∗(c0,

c1, . . . , ck,m) = (c′0, c′1, . . . , c′k), is defined as follows,
where 0 � m � k is the index of the updated bit, and
(c0, c1, . . . , ck) � (c′0, c′1, . . . , c′k). We distinguish between the
two cases of whether the hot or a cold bit changes its value.

1) m = k (cold): then (c′0, c′m+1) = E(c0, cm+1, 1) =
(c0, cm+1 + 2).

2) m = k (hot): if there exists 1 � i � k such that
E(c0, ci , 0) = (c0, ci+1), then set c′i = ci+1 and c′j = c j

for all j = i in the range 0 � j � k. Otherwise (that
is, for all 1 � i � k, E(c0, ci , 0) = (c0 + 1, ci)), set
(c′0, c′1, . . . , c′k) = (c0 + 1, c1, . . . , ck).

Let us show an example of this construction.
Example 1: In this example, we show how Construction 6

works for k = 4 (n = 5), and q = 5. Thus, we store a single
hot bit b0 and four cold bits b1, b2, b3, b4 in five 5-ary cells
c0, c1, c2, c3, c4.

The table shows a sequence of bit updates (left column) and
the resulting updated cell levels (center column). The values of
all 5 bits after the write are shown on the right column.
The correctness of Construction 6 is proved in the following
two lemmas.

Lemma 19: If D∗(c0, c1, . . . , ck) = (b0, b1, . . . , bk) and the
hot bit changes its value then

D∗(E∗(c0, c1, . . . , ck, 0)) = (b0, b1, . . . , bk).

Proof: If the hot bit changes its value then exactly one
cell increases by one level. Therefore, the value of the hot
bit is flipped. Now we need to show that the cold bits
are not affected. The correctness of the update function

comes from the property that throughout the write sequence
D(c0, ci+1)0 = bi . This is clearly true for the initial state
(c0, . . . , ck) = (0, . . . , 0), and we now show that it is kept as
an invariant property after every update step.

When the hot bit is updated by applying the update function
E(c0, ci , 0) = (c0, ci + 1) for some i , then necessarily the
value of all the cold bits besides the (i − 1)-th bit do not
change. However, the value of the (i−1)-th bit does not change
either, because the pair (c0, ci) is updated according to E , thus
maintaining the invariant property. Alternatively, when the hot
bit is updated by incrementing c0 → c0 + 1, all pairs (c0, ci)

are affected, and we need to show that all cold bits bi remain
unchanged. This is guaranteed by the fact that this update rule
is only chosen when E(c0, ci , 0) = (c0 + 1, ci) for all i , and
thus applying this update will maintain the invariant property
for all pairs (c0, ci) simultaneously.

For the correctness of the cold-bit writes we have the
following.

Lemma 20: If D∗(c0, c1, . . . , ck) = (b0, b1, . . . , bk) and the
m-th bit, 0 � m � k − 1, changes its value (for the first time)
then

D∗(E∗(c0, c1, . . . , ck ,m))
= (b0, b1, . . . , bm−1, bm, bm+1, . . . , bk).

Proof: First note that when a cold bit changes its value,
then the sum of the cell levels increases by two, and from the
modulo 2 addition the value of the hot bit bk does not change.
Since only cm+1 is updated, all cold bits other than bm remain
unchanged. Finally, to prove that bm changes to 1 we note
that before the write cm+1 � c0 − 2 from Lemma 16 and
the invariant property proved in Lemma 19, and thus c′m+1 =
cm+1 + 2 � c0. Hence, from the definition of D the value of
the cold bit bm is 1.

The number of writes of Construction 6 is proved in the
next theorem.

Theorem 21: Construction 6 guarantees t = n(q − 1) − k
total writes.

Proof: Each cold-bit write adds 2 to a cell i ∈ {1, . . . , k}.
Throughout the write sequence each cell i ∈ {1, . . . , k} is
incremented by 2 at most once. From the invariant property
that E∗(c0, c1, . . . , ck, 0) is either (c0, c1, . . . , ci + 1, . . . , ck)

for some i or (c0+1, c1, . . . , ck), each of the remaining q−3
increments of each cell i ∈ {1, . . . , k} can be used for hot
writes, as well as all q − 1 increments of c0. In total the
number of hot writes is thus k(q − 3)+ q − 1, and adding the
k cold-bit writes we get

k + k(q − 3)+ q − 1 = (k + 1)(q − 1)− k = n(q − 1)− k

total writes.

D. Two Hot Bits and One Cold Bit

In this part we extend the 2-cell 1-hot and 1-cold bit
Construction 5 to storing 2 hot bits and 1 cold bit in two
cells. According to the hot/cold model, the two hot bits are
updated (together, as a group) as many times as possible, while
the cold bit is updated up to once, and anywhere in the write
sequence. The 3-bit information value (b0, b1, b2) stored in the

CASSUTO AND YAAKOBI: SHORT Q-ARY FIXED-RATE WOM CODES 3957

Fig. 6. Decoding function: 2-hot bits and 1-cold bit 2-cell code.

memory will be represented by an integer from {0, . . . , 7}.
The hot bits b1, b2 are the two least significant bits in the
binary representation of this integer, and the cold bit b0 is the
most significant bit (hence the cold bit is set to 1 when the
value is � 4 and to 0 otherwise). We now present the code
construction.

Construction 7: For any q , we define a 2-cell, 2-hot bits and
1-cold bit code as follows.

1. Decoding Function: ψ(c1, c2) specified pictorially in
Figure 6.

2. Update Function: Given current levels (c1, c2) and input
value m, find the the new cell levels (c′1, c′2) that satisfy the
following conditions.

1) c′1 � c1, c′2 � c2.
2) ψ(c′1, c′2) = m as defined in Figure 6.
3) (c′1, c′2) minimizes the value of max{c′′1, c′′2} among all the

points (c′′1, c′′2) that satisfy conditions 1 and 2.

The update function of Construction 7 is the natural one given
the decoding function of Figure 6. In each update of the hot
bits, we go diagonally up and to the right to the nearest value
equal to the input. In the update of the cold bit, we go vertically
upward (and if necessary, as happens after the later hot writes,
also to the right) to the value that equals the current value
plus 4. To verify the number of writes of Construction 7,
we see that the j -th write of the hot bits progresses the
levels not beyond the j -th frontier marked in Figure 6 by
right-angled solid/dashed lines. A cold write brings us within
the corresponding dashed frontier vertically above. The only
exception of the regular square shaped frontiers happens at
the last write, where the dashed frontier becomes a rectangle.
Altogether it is not hard to see that the following result
applies.

Proposition 22: Construction 7 guarantees q−3 writes of the
two hot bits and one write of the cold bit, or q − 2 writes of the
hot bits.

As previous hot/cold constructions, Construction 7 also
shows that the cost of adding a cold bit to a re-write code
in terms of the number of writes is insignificant (q − 3 or
q − 2 writes vs. q − 1 when the code has just the hot bits). In
the following we show that Construction 7 achieves an optimal
number of writes.

Proposition 23: Any code that guarantees t writes of two hot
bits and one write of a cold bit, or t + 1 writes of the two hot
bits must have t � q − 3.

Proof: The number of writes when storing only two bits
in two cells is at most q − 1. Hence, we already have that
t � q − 2. Assume to the contrary that t = q − 2. Let us
consider a write sequence where on the first q−2 writes only
the two hot bits are updated and on every write we choose an
update of the two hot bits that increases the sum of the levels
in the two cells by at least 2. Hence, after these t writes, the
sum of levels is at least 2(q − 2), and the memory state can
only be one of the following: (q − 2, q − 2), (q − 1, q − 3),
(q − 3, q − 1), (q − 2, q − 1), (q − 1, q − 2), (q − 1, q − 1).
On the (t + 1)-th write, we can either write the two bits again
or write the cold bit. Thus, from the current memory state
there should be at least four different memory states that are
reachable. However, from none of these six memory states it
is possible to reach four more different memory states, which
leads to contradiction. Hence, t � q − 3.

VI. CONCLUSION

The present paper advances our constructive knowledge
on short re-write codes with fixed input sizes, a model we
believe is the most applicable to practical multi-level flash
storage. Easy to implement constructions for general alphabet
sizes q are given with precise guarantees on the number of
writes. Many of the constructions are shown to be optimal,
and others close to optimality. In the hot/cold model we show,
in a series of optimal constructions, that adding cold bits to re-
write codes incurs little cost, and thus joint hot/cold storage is
an attractive solution to achieving wear leveling between input
bits of different update characteristics. Continuing the progress
started here, important research directions lie ahead. Lattice-
tiling codes need to be extended to dimensions beyond 3, and
their gaps to optimality need to be further studied and reduced.
As far as hot/cold codes are concerned, a more complete
theory of constructions and limits ought to be developed on
the foundations presented here.

ACKNOWLEDGEMENT

The authors wish to thank Tuvi Etzion for valuable discus-
sions, and the anonymous reviewers for improving the clarity
of the results.

REFERENCES

[1] A. Bhatia, A. Iyengar, and P. H. Siegel, “Multilevel 2-cell t-write codes,”
in Proc. IEEE Information Theory Workshop, Lausanne, Switzerland,
Sep. 2012, pp. 247–251.

[2] D. Burshtein and A. Strugatski, “Polar write once memory codes,”
in Proc. IEEE Int. Symp. Information Theory, Cambridge, MA, USA,
Jul. 2012, pp. 1972–1976.

[3] S. Buzaglo and T. Etzion, “Tilings with n-dimensional chairs and their
applications to WOM codes,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1573–1582, Mar. 2013.

[4] Y. Cassuto and E. Yaakobi, “Short Q-ary WOM codes with hot/cold
write differentiation,” in Proc. IEEE Int. Symp. Information Theory,
Cambridge, MA, USA, Jul. 2012, pp. 1396–1400.

[5] G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Oct. 1986.

3958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

[6] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans.
Inf. Theory, vol. 30, no. 3, pp. 470–480, May 1984.

[7] F. Fu and A. H. Vinck, “On the capacity of generalized write once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 308–313, Jan. 1999.

[8] R. Gabrys and L. Dolecek, “Characterizing capacity achieving write
once memory codes for multilevel flash memories,” in Proc. IEEE
Int. Symp. Infomation Theory, St. Petersburg, Russia, Aug. 2011,
pp. 2484–2488.

[9] R. Gabrys et al., “Non-binary WOM-codes for multilevel flash mem-
ories,” in Proc. IEEE Information Theory Workshop, Paraty, Brazil,
Oct. 2011, pp. 40–44.

[10] P. Godlewski, “WOM-codes construits à partir des codes de Hamming,”
Discrete Math., vol. 65, no. 3, pp. 237–243, Jul. 1987.

[11] K. Haymaker and C. A. Kelley, “Geometric WOM codes and coding
strategies for multilevel flash memories,” Design Codes Cryptography,
vol. 70, pp. 91–104, Jan. 2014.

[12] C. Heegard, “On the capacity of permanent memory,” IEEE Trans. Inf.
Theory, vol. 31, no. 1, pp. 34–42, Jan. 1985.

[13] Q. Huang, S. Lin, and K. A. S. Abdel-Ghaffar, “Error-correcting codes
for flash coding,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6097–6108,
Sep. 2011.

[14] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint
information storage in flash memories,” IEEE Trans. Inf. Theory, vol. 56,
no. 10, pp. 5300–5313, Oct. 2010.

[15] A. Jiang et al., “Storage coding for wear leveling in flash memories,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5290–5299, Oct. 2010.

[16] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Trajectory codes for
flash memory,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4530–4541,
Jul. 2013.

[17] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[18] B. Kurkoski, “Lattice-based WOM codebooks that allow two writes,”
in Proc. Int. Symp. Information Theory and Its Applications, Honolulu,
HI, USA, Oct. 2012.

[19] B. Kurkoski, “Notes on a lattice-based WOM construction,” in Proc.
34th Symp. Information Theory and Its Applications, Iwate, Japan,
Nov./Dec. 2011, pp. 520–524.

[20] B. Kurkoski, “Rewriting codes for flash memories based upon lattices,
and an example using the E8 lattice,” in Proc. IEEE Globecom, ACTEMT
Workshop, Dec. 2010, pp. 1–5.

[21] F. Merkx, “Womcodes constructed with projective geometries,” Traite-
ment Signal, vol. 1, no. 2, pp. 227–231, 1984.

[22] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” Inf.
Control, vol. 55, no. 1, pp. 1–19, Dec. 1982.

[23] A. Shpilka. (2012, Sep.). Capacity achieving multiwrite WOM codes.
arXiv:1209.1128 [Online]. Available: http://arxiv.org/abs/1209.1128

[24] A. Shpilka, “New constructions of WOM codes using the Wozencraft
ensemble,” in Proc. Latin American Symp. Theoretical Informatics,
Arequipa, Peru, Apr. 2012.

[25] S. Stein and S. Szabo, Algebra and Tiling. Washington, DC, USA: Math.
Assoc. Amer., 1994.

[26] Y. Wu and A. Jiang, “Position modulation code for rewriting write-once
memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3692–3697,
Jun. 2011.

[27] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf, “Codes
for write-once memories,” IEEE Trans. Inf. Theory, vol. 58, no. 9,
pp. 5985–5999, Sep. 2012.

Yuval Cassuto (S’02–M’08) is a faculty member at the Department of
Electrical Engineering, Technion–Israel Institute of Technology. His research
interests lie at the intersection of the theoretical information sciences and the
engineering of practical computing and storage systems.

During 2010–2011 he has been a Scientist at EPFL, the Swiss Federal
Institute of Technology in Lausanne.

From 2008 to 2010 he was a Research Staff Member at Hitachi Global
Storage Technologies, San Jose Research Center.

He received the B.Sc degree in Electrical Engineering, summa cum laude,
from the Technion, Israel Institute of Technology, in 2001, and the MS
and Ph.D degrees in Electrical Engineering from the California Institute of
Technology, in 2004 and 2008, respectively.

From 2000 to 2002, he was with Qualcomm, Israel R&D Center, where
he worked on modeling, design and analysis in wireless communications.

Dr. Cassuto has won the 2010 Best Student Paper Award in data storage
from the IEEE Communications Society, as well as the 2001 Texas Instru-
ments DSP and Analog Challenge 100, 000 prize.

Eitan Yaakobi (S’07–M’12) received the B.A. degrees in computer science
and mathematics, and the M.Sc. degree in computer science from the
Technion–Israel Institute of Technology, Haifa, Israel, in 2005 and 2007,
respectively, and the Ph.D. degree in electrical engineering from the University
of California, San Diego, in 2011.

He is currently a postdoctoral researcher in electrical engineering at the
California Institute of Technology, Pasadena and he is also affiliated with
the Center for Magnetic Recording Research at the University of California,
San Diego. His research interests include information and coding theory with
applications to non-volatile memories, associative memories, data storage and
retrieval, and voting theory. He received the Marconi Society Young Scholar
in 2009 and the Intel Ph.D. Fellowship in 2010-2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

