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EFFICIENT TWO WRITE WOM CODES, 
CODING METHODS AND DEVICES 

PRIORITY CLAIM AND REFERENCE TO 
RELATED APPLICATION 

[0001] The application claims priority under 35 U.S.C. 
§119 and all applicable treaties and statutes from prior pro 
visional application Ser. No. 61/353,419, WhichWas ?led Jun. 
10, 2010, and is incorporated by reference herein. 

FIELD 

[0002] A ?eld of the invention is data coding and compres 
sion. Embodiments of the invention provide WOM (Write 
Once Memory) coding methods and devices. 

BACKGROUND 

[0003] A Write Once Memory (WOM) is a storage medium 
With binary memory elements, called cells, that can change 
from the Zero state to the one state only once, except, in some 
types of memory, upon a block erase. WOM-codes Were 
originally designed for memories that consist of binary 
memory elements that could physically only be changed from 
a Zero state to a one state. Examples of such memories are 
punch cards and optical disks. More recently, WOM-codes 
have been designed for general usage in different types of 
memories, including ?ash memories. See, e.g., A. Jiang, “On 
the Generalization of Error-Correcting WOM-codes,” in 
Proc. IEEE Int. Symp. Inform. Theory, pp. 1391-1395, Nice, 
France (2007); A. J iang and J. Bruck, “Joint coding for ?ash 
memory storage,” in Proc. IEEE Int. Symp. Inform. Theory, 
pp. 1741-1745, Toronto, Canada, (July 2008); H. Mandavifar, 
P. H. Siegel, A.Vardy, J. K. Wolf, and E.Yaakobi, “A Nearly 
Optimal Construction of Flash Codes,” in Proc. IEEE Int. 
Symp. Inform. Theory. pp. 1239-1243, Seoul, Korea, (July 
2009). 
[0004] A WOM-code alloWs the reuse of a Write-once 
medium by introducing redundancy into the recorded bit 
sequence and, in subsequent Write operations, observing the 
state of the medium before determining hoW to update the 
contents of the memory With a neW bit sequence. 

[0005] A simple example enables the recording of tWo bits 
of information in 3 memory elements, tWice. The encoding 
and decoding rules for this WOM-code are described in a 
tabular form in the table beloW. It is easy to verify that after the 
?rst 2-bit data vector is encoded into a 3-bit codeWord, if the 
second 2-bit data vector is different from the ?rst, the 3-bit 
codeWord into Which it is encoded does not change any code 
bit 1 into a code bit 0, ensuring that it can be recorded in the 
Write-once medium. 

Data Bits First Write Second Write 

00 000 1 11 
10 100 01 1 
01 010 101 
11 001 110 

[0006] The sum-rate of the WOM-code is the sum of all the 
individual rates for each Write. While there are different Ways 
to analyZe the ef?ciency of WOM-codes, We ?nd that the 
appropriate ?gure of merit is to analyZe the sum-rate under 
the assumption of a ?xed number of Writes. In general, the 
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more Writes the WOM-code can support, the better the sum 
rate it can achieve. The goal is to give upper and loWer bounds 
on the sum-rates of WOM-codes While ?xing the number of 
Writes t to a desired number. 

SUMMARY OF THE INVENTION 

[0007] An embodiment of the invention provides a family 
of 2-Write WOM-codes, preferred embodiments of Which 
provide improved WOM-rates. Embodiments of the inven 
tion provide constructs for linear codes C having a 2-Write 
WOM-code. Embodiments of the invention provide 2-Write 
WOM-codes that improve the best knoWn WOM-rates knoWn 
to the present inventors at the time of ?ling With tWo Writes. 
Preferred WOM-codes are proved to be capacity achieving 
When the parity check matrix of the linear code C is chosen 
uniformly at random. 
[0008] Preferred embodiments of the invention provide an 
electronic device utiliZing an e?icient coding scheme of 
WOM-codes With tWo Write capability. The coding method is 
based on linear binary codes and alloWs the electronic device 
to Write information to the memory tWice before erasing it. 
This method can be applied for any kind of memory systems, 
and in particular for ?ash memories. The method is shoWn to 
outperform all Well-knoWn codes. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] FIG. 1 plots computer search determined rates and 
theoretical capacity for prior WOM-codes; 
[0010] FIG. 2 illustrates a Blackwell channel; 
[0011] FIG. 3 plots computer search determined rates and 
theoretical capacity of the BlackWell channel; 
[0012] FIG. 4 illustrates a [3,3:4,3,2] three-Write WOM 
code. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[0013] The invention addresses tWo problems related to 
2-Write WOM-codes 1) The number of messages Written to 
the memory on each Write is the same; 2) Different number of 
messages can be Written on each Write. For the case of 2-Write 
WOM-codes, the theoretical bound on the WOM-rate for the 
?rst problem is approximately 1.5458 and in the second prob 
lem it is approximately 1 .58. Since the best knoWn WOM-rate 
for the ?rst problem is approximately 1.34 and 1.37 for the 
second problem, there is still room for improvement in clos 
ing these gaps. The invention provides a family of 2-Write 
WOM-codes, preferred embodiments of Which provide 
improved WOM-rates. Embodiments of the invention pro 
vide constructs for linear codes C having a 2-Write WOM 
code. Embodiments of the invention provide 2-Write WOM 
codes that improve the best knoWn WOM-rates knoWn to the 
present inventors at the time of ?ling With tWo Writes. Pre 
ferred WOM-codes are proved to be capacity achieving When 
the parity check matrix of the linear code C is chosen uni 
formly at random. 
[0014] Preferred embodiments of the invention provide an 
electronic device utiliZing an e?icient coding scheme of 
WOM-codes With tWo Write capability. The coding method is 
based on linear binary codes and alloWs the electronic device 
to Write information to the memory tWice before erasing it. 
This method can be applied for any kind of memory systems, 
and in particular for ?ash memories. The method is shoWn to 
outperform all Well-knoWn codes. 
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[0015] Preferred embodiments of the invention are appli 
cable to memories having cells that can change their state 
from Zero to one but not from one to Zero except upon an erase 

of the entire memory. Preferred embodiments of the invention 
are t-write WOM-codes that conform to Thoerem 1 in the 
description below. 
[0016] Preferred embodiments of the invention will now be 
discussed with respect to the drawings. The drawings may 
include schematic representations, which will be understood 
by artisans in view of the general knowledge in the art and the 
description that follows. Features may be exaggerated in the 
drawings for emphasis, and features may not be to scale. 

Two-Write WOM-Codes 

[0017] Preferred embodiment methods and devices use a 
two-write WOM-codes construction that reduces the gap 
between the upper and lower bound on the sum-rates for both 
?xed- and unrestricted-rate WOM-codes. In Reference [28], a 
“coset-coding” is used only on the second write in order to 
generate an e-error two -write WOM-codes. However, in e-er 
ror two -write WOM-codes, the second write is not guaranteed 
in the worst case but is allowed with high probability. Meth 
ods and codes of the invention guarantee from every linear 
code a two-write WOM-code. A “coset-coding” scheme only 
on the second write is used as in Reference [28], but the ?rst 
write is modi?ed such that the second write is guaranteed in 
the worst case. Preferred speci?c embodiment WOM-codes 
have better sum-rates than the previously best known codes 
discussed above. Preferred embodiment WOM-codes choose 
uniformly at random the parity-check matrix of the linear 
code, such that there exist WOM-codes that achieve all points 
in the capacity region of two-write WOM-codes. An example 
application of a preferred method generate from each two 
write WOM-code a code for the Blackwell channel. 

A. Two-Write WOM-Codes Construction 

[0018] Let C[n,k] be a linear code with parity-check matrix 
R . For each v E {0, 1}” we de?ne the matrix R v as follows. 
The i-th column of R v, léién, is the i-th column of R if 
vi:0 and otherwise it is the Zeros column. The set Vc is 
de?ned to be 

[0019] We ?rst note the following position. If a vector v 
belongs to Vc, its weight is at most k. 
[0020] The support of a binary vector v, denoted by supp 
(v), is the set {i/vi:1 The dual of the code C is denoted by 
C1. The next lemma is a variation of a well known result (see 
eg Reference [5]). 
[0021] Lemma 1. Let C[n, k] be a linear code with parity 
check matrix R . For each vectorv E {0, 1}”, rank( R v):n—k 
if and only if v does not cover any non-Zero codeword in C1. 
[0022] Lemma 1 implies that if two matrices are parity 
check matrices of the same linear code C, then their corre 
sponding sets Vc are identical, and so we can de?ne the set Vc 
to be 

[0023] Vc:{v E {0, 1}”lv does not cover any non-Zero c 6 
C1). 
[0024] The next theorem presents the preferred embodi 
ment two-write WOM-codes, 
[0025] Theorem 1. Let C[n,k] be a linear code with parity 
check matrix R and let Vc be the set de?ned in (1). Then 
there exists an [n,2; |Vc|,2”_k] two-write WOM-code of sum 
rate 
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[0026] The two-write WOM-code can be proven by show 
ing the existence of the encoding and decoding maps on the 
?rst and second writes. First, let {V1, v2, . . . v, lvcl} be an 
ordering of the set Vc. The ?rst and the second writes are 
implemented as follows. 
[0027] 1) On the ?rst write, a symbol over an alphabet of 
siZe IVCI is written. The encoding and decoding maps E1, D1 
are de?ned as follows. For each m E {1, . . ., IVCI }, El (m)q/m 

and D1 (vm):m. 
[0028] 2) On the second write, we write a vector s2 of n-k 
bits. Let vl be the programmed vector on the ?rst write and 
s 1: R v1, then 

where v2 is a solution of the equation R V] ~v2:s1+s2. For the 
decoding map D2, if c is the vector of programmed cells, then 
the decoded value of the n-k bits is given by D2(c):R c: 
R -vl+R ~v2:sl+sl+s2:s2. 
[0029] The success of the second write results from the 
condition that for every vector v 6 VC, rank (R v):n—k. 
[0030] There is no condition on the code C and therefore we 
can use any linear code in this construction, though we seek to 
?nd codes that maximiZe the sum-rate 

Next, we show two examples of two-write WOM-codes that 
achieve better sum-rates than the previously best known ones. 

EXAMPLE 1 

[0031] This example demonstrates how Theorem 1 works 
for the [l6,5,8] ?rst order Reed-Muller code and demon 
strates a rate of 1.4566. Its dual code is the [16,11,4] second 
order Reed-Muller, which is the extended Hamming code of 
length 16. Hence, we are interested in the siZe of the set 
[0032] Vi:{v E {0,1}l6| v does not cover any c 6 [16,11, 
4]}. 
[0033] According to Equation (1), the set Vl does not con 
tain vectors of weight greater than ?ve. This extended Ham 
ming code has 140 codewords of weight four and no code 
words of weight ?ve. The set Vl consists of the following 
vector sets. 

[0034] 1) All vectors of weight at most three. There are 
Zi:O3(l-16):697 such vectors. 
[0035] 2) All vectors of weight four that are not codewords. 
There are (4l6)—140 :1680 such vectors. 
[0036] 3) All vectors of weight ?ve that do not cover a 
codeword of weight four. There are (516)—12~140:2688 such 
vectors. Since the minimum distance of the code is four, a 
vector of weight ?ve can cover at most one codeword of 
weight four. 
[0037] Therefore, we get |Vi|:697+1680+2688:5065 and 
the sum-rate is 

(log2(5065)+11)/16 :1.4566. 

[0038] It is possible to modify this WOM-code such that on 
the ?rst write only 11 bits are written. Thus, we achieve a 
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two-write ?xed-rate WOM-code and its sum-rate is 22/ 1 6:1. 
375, which is the best known ?xed-rate WOM-code. 

EXAMPLE 2 

[0039] In this example we will use the [23,11,8] Golay 
code. Its dual code is the [23,12,7] Golay code so we are 
interested in the siZe of the set V2:{v E {0, 1}23 IV does not 
cover any c E [23, 12,7]}. 
[0040] According to Equation (1), there are no vectors of 
weight greater than 11 in the set V2. The invention achieves a 
rate of 1.4632. The [23,12,7] Golay code has A7:253 code 
words of weight seven, A7:506 codewords of weight eight, 
andA1l:1288 codewords ofweight 1 1. The setV2 consists of 
the following vector sets. 
[0041] 1) All vectors of weight at most 6. This number of 
vectors is Zi:O6(l-23):145499. 
[0042] 2) All vectors of weight between 7 and 10 besides 
those that cover a codeword of weight 7 or 8. Since the 
minimum distance of the code is 7 every vector can cover at 
most one codeword. Hence, this number of vectors is 

10 10 10 
23 16 15 

_ —A7- _ —A8- _ :2459160. 
1 1-7 1- 8 

[0043] 3) All vectors of weight 11 that are not codewords 
and do not cover a codeword of weight either 7 or 8. This 
number was shown in [6] to be 695520. 
[0044] Therefore, for the [23,11,8] Golay code we get 
|v2|:145499+2459160+695520I3300179, and thus the sum 
rate is 

(log2(3300179)+12)/23:1.4632. 

B. Random Coding 

[0045] The preferred coding and coding methods consis 
tent with FIG. 1 can be shown to work for any linear code C. 
Given a linear code C[n,k] with parity-check matrix H6, we 
denote 

731(6) = 

so the sum-rate of the generated WOM-codes is 

731(6) 4432(6) = 

[0046] Our goal in this subsection is to show that it is 
possible to achieve the capacity region C2 of a t-write WOM 
code by choosing uniformly at random the parity-check 
matrix of the linear code C. We prove that in the following 
theorem. 
[0047] Theorem 2. For any (R1, R2) 6 C2 and e>0 there 
exists a linear code C satisfying Rl(C)§R1—e, R2(C)§R2—e. 
[0048] Proof: Let p 6 [0,05] be such that Rl§h(p) and 
R2§1—p. Let k:[np] for n large enough and let us choose 
uniformly at random an (n-k) ><n matrix H. The matrix twill be 
the parity-check matrix of the linear code C that will be used 
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to construct the two-write WOM-code. For each vector v E 

{0, 1}”, let us de?ne the indicator random variable Xv (R ) on 
the space of all matrices as follows 

1 ifveVc 
0 otherwise 

where Vc is the set de?ned in Equation (1). Note that choos 
ing the matrix R uniformly at random induces a probability 
distribution on the set Vc and thus a probability distribution 
on the random variable Xv( R ). Then the number of vectors in 

Vc is X(R ):ZvE{0,1}” XV(R ), and 

,, 

Venn” Venn 

[0049] We maintain that Pr {Xv (H):1} depends on v only 
through its weight, wt (v). In this case, (2) simpli?es to 

n 

i 

k 

because if wt(v)§k—1 then XVIO (Equation (1)). 

[0050] Now, let us determine the value of Pr {Xv (H):1} for 
a vectorv of weight Oéiék. Note that v EVc if and only if the 
sub-matrix of siZe (n—k)><(n—wt (v)) induced by the Zero 
entries of the vector v is full rank. It is well known, that if we 
choose an m x n matrix, where mén, uniformly at random 
then the probability that it is full rank is IIi:n_m+1”(1—2—i). 
Therefore, if we choose an (n—k)><(n—i) matrix uniformly at 
random then the probability that it is full rank is IIi:k_l-+l”_i 
(1—2_i). Note that 

1 

Z, NIH NIH 

and hence, Pr{Xv(H):1 }:IIl-:k_i+1”_i(1-2_i)>1/4 According 
to Lemma 4.8 in Reference [24], 

J z nljfhllil 
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and, therefore, We get 

k 

[0051] It follows that there exists a parity-check matrix 
R of a linear code C, such that the siZe of the set Vc is at least 

and 

k 2+log(n+1) 
Z 2 2731-5 

for n large enough. 
[0052] Random coding Was proved to be capacity-achiev 
ing by constructing a partition code References [14], [9]. 
HoWever, the present random coding method has more struc 
ture that enables to look for WOM-codes With a relatively 
small block length. We ran a computer search to look for such 
WOM-codes. The parity-check matrix of the linear code C 
Was chosen uniformly at random and then the siZe of the set 
Vc Was computed. The results are shoWn in FIG. 1. Note that 
if (R1, R2) and (R3, R4) are tWo achievable rate points then for 
eacht E Q the point (tR l+(1—f)'R 2, f'R 3+(1—t)'R 4) is an 
achievable rate point, too. This can simply be done by block 
sharing of a large number of blocks. Therefore, the achievable 
region is convex. 
[0053] We ran a computer search to ?nd more tWo-Write 
WOM-codes With high sum-rates. For ?xed-rate WOM 
codes, our best construction achieved by a computer search 
has sum-rate 

48 14546 
§~ . 

and for unrestricted-rate WOM-codes our best computer 
search construction achieved sum-rate 1 .4928. The number of 
cells in these tWo constructions is 33. 

[0054] The encoding and decoding maps of the second 
Write are implemented by the parity-check matrix of the lin 
ear code C as described in the proof of Theorem 1. A naive 
scheme to implement the encoding and decoding maps of the 
?rst Write is simply by a lookup table of the set Vc. HoWever, 
this can be done more ef?ciently using algorithms to encode 
and decode constant Weight binary codes. There are several 
Works Which e?iciently encode and decode all binary vectors 
of length n and Weight k and can be used; see for example 
References [2], [7], [19], [25], [26]. These Works canbe easily 
extended to construct ef?cient encoder and decoder maps to 
the set of all binary vectors of length n and Weight at most k, 
denoted by 

Mar. 28, 2013 

[0055] The set Vc is a subset of the set B(n, k). Therefore, 
We can use these algorithms While constructing a smaller 
table, only for the vectors in the set B(n,k)\Vc as folloWs. 
Assume that f: 1, . . . , |B(n, k)| }QB(n,k ) is a one-to-one and 
onto map such that the complexity to calculate f and f'1 is 
e?icient. Assume We list all the vectors in B(n, k)\VC such that 
We list for every vector v E B(n,k)\VCits value f' l (v) and this 
list is sorted according to the values of f'l(v). Then, a map 
ping g: {1, . . . , |VC|}QVC is constructed such that for all x 

E {1, . . . IVCI }, g(x):f(x+a(x)), Where a(x) is the number of 
vectors in B(n, k)\VC of value less than x. The time complex 
ity to calculate a(x) is a(x) is O(log2(|B(n,k)\VC|)) since this 
list is sorted. Similarly, for all v 6 VC, g_l(v):f_l(v)—a(f_l 
(V)) 
[0056] In many cases, the siZe of the set B (k,n)\Vc Will be 
signi?cantly smaller than the siZe of Vc. For example, for the 
Golay code [23,11,8] the siZe of 

11 
n 

E [ _ 1-3300179 : 894125. 1 

[0057] Vc is 3300179 While the siZe of B(23, 11)\Vc is 
Similarly, for the Reed-Muller code [16,5,8] the siZe of the set 
Vc is 5065 While the siZe of the set B(16, 5)\Vc is 1820. 

C. Application to the Blackwell Channel 

[0058] The BlackWell channel, introduced ?rst by Black 
Well [1], is one example of a deterministic broadcast channel. 
The channel is composed of one transmitter and tWo receiv 
ers. The input to the transmitter is ternary and the channel 
output to each receiver is a binary symbol. Let u be the ternary 
input vector to the transmitter of length n. For léién, f(ul-) 
:(f(ul-)l, f(ul-)2), is a binary vector of length tWo de?ned as 
folloWs (FIG. 2): 

The binary vectors f 1 (u), f2(u) are de?ned to be 

f2(14):(f(141)2,f(”2)2, - - - 11114792), 

and are the output vectors to the tWo receivers. 
[0060] The capacity region of the BlackWell channel Was 
found by Gel’fand [1 1] and consists of ?ve sub-regions, given 
by their boundaries: 

tWo-Write WOM-codes Was identi?ed by Roth [23]. The next 
theorem shoWs that from every tWo -Write WOM-code of rate 
(R1, R2) it is possible to construct codes for the BlackWell 
channel of rates (R1,R2) and (R2,Rl). 
[0062] Theorem 3. If (Rl,R2) is an achievable rate of a 
tWo-Write WOM-code, then (R1, R2) and (R2, R1) are achiev 
able rates on the BlackWell channel. Proof Assume that there 
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exists a [n, 2;2”R1, 2”R2] two-write WOM-code and let E1, E2 
and D1, D2 be its encoding and decoding maps. We maintain 
that there exists a coding scheme for the Blackwell channel of 
rate (R1, R2). Let (m 1, m2) 6 {1, . . . , 2”Rl}><{l, . . . , 2”R2} 

be two messages and let vl:El(ml) and v2:E2(m2,v 1). Let u 
be a ternary vector of length n de?ned as follows. For léién, 
ui:f'l(vl,i, The vector u is well-de?ned since for all 

léién, (vlJ, v2,l-)#(l ,0) and hence (vlJ, v2,l-)#(l,l). The vec 
tor u is the input to the transmitter. Then, the vector fl(u) is 
transmitted to the ?rst receiver and the vector f2(u) to the 
second receiver. Note that f1(u)q/l and f2(u)q/2. Therefore, 
the ?rst receiver decodes its message according to Z) l(fl 
(u)): D l(vl):ml and the second receiver decodes its mes 
sage according to D 2(f2(u)): D 2(v2):m2. 

[0063] Similarly, it is possible to achieve the rate (R2, R1). 
Now we let v2:E2(m2) and VIIEI (ml, v2). The vector u is 
de?ned as ui:f_l(€,i, vz?.) for léién. The decoded message 
by the ?rst receiver is D1(fl (u)) and D2(f2(u)) is the decoded 
message by the second receiver. 

[0064] It is possible to de?ne the Blackwell channel differ 
ently such that the forbidden pair of bits is not (1, l) but 
another combination. Our construction of the codes can be 
adjusted accordingly. 
[0065] Now, we can use our two-write WOM-codes in 
order to de?ne codes for the Blackwell channel. By using 
time sharing, the achievable region is convex and hence we 
get in FIG. 3 the capacity and achieved regions for the Black 
well channel. 

Multiple-Write WOM-Codes 

[0066] The invention also provides WOM-code construc 
tions which reduce the gaps between the upper and lower 
bounds on the sum-rates of WOM-codes for 3§t§l0. First, 
we generaliZe the two-write WOM-code construction from 
above for non-binary cells. Then, we show how to use these 
non-binary two-write WOM-codes in order to construct 
binary multiple-write WOM-codes. We start with speci?c 
constructions for three- and four-write WOM-codes, and then 
show a general design approach that works for an arbitrary 
number of writes. 

A. Non-Binary Two-Write WOM-Codes 

[0067] Suppose now that each cell has q levels, where q is 
a prime number or a power of a prime number. We start by 
choosing a linear code C[n,k] over GF(q) with a parity-check 
matrix R of siZe (n—k)><n. For a vector v of length n over 
GF(q), let R (v) be the matrix R with Zero columns replac 
ing the columns that correspond to the positions of the non 
Zero values in v. Then we de?ne 

[0068] Next, we construct a non-binary two-write WOM 
code [n,2; IVCW) |, q”'‘’] in a similar manner to the construction 
in Section IV. Since the proof of the next theorem is very 
similar to the proof of Theorem 4 we omit it. A complete proof 
can be found in [18]. 

[0069] Theorem 4. Let C[n,k] be a linear code with parity 
check matrix R over GF(q) and let V60’) be the set de?ned in 
(3). Then there exists a q-ary [n, 2; |Vc(q)|, q”_k] two-write 
WOM-code of sum-rate 
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As was shown in the binary case, there is no restriction on the 
choice of the linear code C or the parity-check matrix R . 
Every such code/matrix generates a WOM-code. For a linear 
code C we de?ne 

731(6) = and 732(6) = 

so the sum-rate of the generated WOM-code is Rl (C) +R2 
(C). The capacity region of the achievable rates by this con 
struction is 

R1 s W) + plogzm —1).1<2 <<1- p)1og2<q)} 

[0070] Theorem 5. Forany R 1, R 2; EC2(q) ande>0, there 
exists a linear code C satisfying Rl(C)§R1—e, R2(C)§R2—e. 
[0071] The next corollary provides the best achievable 
sum-rate of the construction. 
[0072] Corollary. For any q-ary WOM-code generated 
using our construction, the highest achievable sum-rate is 
1Og2(2q—1) 
[0073] Proof: First, note that 

—l 
mp) + plow - 1) + <1 — pnogzq = meg/(g7) + (1 - p)1@gz(£). 

and since the function f(x):log2 x is a concave function 

the achievable sum-rate is log2(2q— l ). Therefore, there exists 
a WOM-code produced by our construction with sum-rate 
1Og2(2q—1) 
[0075] On the other hand, any WOM-code resulting from 
our construction satis?es the property that every cell is pro 
grammed at most once. This model was studied in Reference 
[9] and the maximum achievable sum-rate was proved to be 
log2 (2q-l). Therefore, our construction cannot produce a 
WOM-code with a sum-rate that exceeds log2(2q—l). 
[0076] This construction does not achieve high sum-rates 
for non-binary two-write WOM-codes in general. While the 
best achievable sum-rate of the construction is log2 (2q-l), 
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the upper bound on the sum-rate is log2(2q—l). The decrease 
in the sum-rate in our construction results from the fact that 
cells cannot be programmed tWice. That is, if a cell Was 
programmed on the ?rst Write, it cannot be reprogrammed on 
the second Write even if it did not reach its highest level. In 
fact, it is possible to ?nd non-binary tWo-Write WOM-codes 
Withbetter sum-rates. However, the goal is not to ?nd e?icient 
non-binary WOM-codes. Rather, the non-binary codes that 
We have constructed can be used in the design of binary 
multiple-Write WOM-codes. 
[0077] For the construction of binary multiple-Write, We 
use WOM-codes over GF(3). We ran a computer search to 
?nd such a ternary tWo-Write WOM-code of sum-rate 2.2205, 
and We Will use this WOM-code in order to construct speci?c 
multiple-Write WOM-codes. 

B. Three-Write WOM-Codes 

[0078] We start With a construction for binary three-Write 
WOM-codes. The construction uses the WOM-codes found 
in the previous subsection over GF(3). 
[0079] Theorem 6. Let C3 be an [n, 2; "R, 2”R 2] tWo 
Write WOM-code over GF(3) constructed as above in Section 
A. Then, there exists a [2n, 3:2”72 2”’R 2, 2”] three-Write 
WOM-code of sum-rate 

[0080] Proof: We denote by E3,l and E3,2 the encoding maps 
of the ?rst and second Writes, and by D3, 1 and D3,2 the decod 
ing maps of the ?rst and second Writes of the WOM-code C3, 
respectively. The 2n cells of the three-Write WOM-code We 
construct are divided into n tWo-cell blocks, so the memory 

state vector is of the form ((cm, cm), c2,l, c2/2), . . . , (cml, 
cn,2)). In this construction We also use map 4); GF(3)% (GF 
(2), GF2)) de?ned as folloWs: 

[0081] The map 4) extends naturally to ternary vectors 
v:(vl, . . . , v”) E GF(3)” using the rule 

[0082] On the pairs (c,c') in the image of 0, We de?ne 
o_l(c,c') to indicate the inverse function. The map 0'1 is 
extended similarly to Work over vectors of such bit pairs. We 
are noW ready to describe the encoding and decoding maps 
for a three-Write WOM-code. 

[0083] 1) On the ?rst Write, a message in from the set {1, . 
. . , 2” R 1} is Written in the 2n cells: 

[0084] The decoding map is de?ned similarly, Where c is 
the memory-state vector: 

P 1(6): D 2164(0)) 

[0085] 2) On the second Write, a message in from the set {1, 
. . . , 2” 72 2} is Written in the 2n cells as folloWs. Let c be the 

programmed vector on the ?rst Write. Then, 
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[0086] That is, ?rst the memory-state vector c is converted 
to a ternary vector. Then, it is encoded using the encoding E3,2 
and the neW message, producing a neW ternary memory-state 
vector. Finally, the last vector is converted to a 2n-bit vector. 
The decoding map is de?ned as on the ?rst Write: 

1) 2(6): 1) 3,26%» 

[0087] According to the construction of the WOM-code C3, 
no ternary cell is programmed tWice and therefore each of the 
n pairs of bits is programmed at most once. 
[0088] 3) On the third Write, an n-bit vector v is Written. Let 
c:((c1,l, cm), . . . , (cnal, cn,2)) be the current memory-state 
vector. Then, 

is a vector, de?ned as folloWs. For léién, Yc’l-J, c'i,2):(l,l) 
if vi:l and otherWise (c'm, c'i,2). It is alWays possible to 
program the pair of bits to be (1, 1) since at most one cell in 
each pair Was previously programmed. The decoding map 
D2(c) is de?ned to be 

[0089] That is, the decoded value of each pair of bits is one 
if and only if the value of both of them is one. 
[0090] Corollary. The best achievable sum-rate of a three 
Write WOM-code using this construction is (log2 5+l)/2zl. 
66. 
[0091] Proof: Given a tWo-Write WOM-code C3 over GF(3) 
With rates (R1, R2), the constructed binary three-Write WOM 
code has rates (RI/2, R2/2, 1/2) and its sum-rate is R:(Rl+R2+ 
l)/ 2. This sum-rate is maximiZed When Rl +R2 is maximized. 
But Rl+R2 is the sum-rate of the tWo-Write WOM-code over 
GF(3), Which Was proven in Corollary 9 to be maximiZed at 
log2 5. Then the maximum achievable sum-rate of the con 
structed binary three-Write WOM-code is 

log25 +1 
2 2: 1.66. 

[0092] Using the construction of WOM-codes over GF(3) 
presented above, We can construct a three-Write WOM-code 
of sum-rate (2.2205+l)/2:l .6102. 
[0093] C. Four-Write WOM-Codes 
[0094] We next present a construction for four-Write binary 
WOM-codes. 

[0095] Theorem 7. Let C3 be an [n,2;2”R3,l,2”R3,2] tWo 
Write WOM-code over Equation (2) constructed as above. Let 
C2 be an [n,2;2”R2,l, 2”R2,2] binary tWo-Write WOM-code. 
Then, there exists a [2n,4;2”R3,1, 2”R3,2, 2”R2,l2”R2,2] four 
Write WOM-code of sum-rate 

R31 + R32 + R21 + R22 
2 

[0096] Proof: The proof is very similar to the one used for 
three-Write WOM-codes. We denote by E3, 1, E3,2 the encod 
ing maps of the ?rst and second Writes, and by D3,], D3,2 the 
decoding maps of the ?rst and second Writes of the WOM 
code C3, respectively. Similarly, the encoding and decoding 
maps of the WOM-code C2 for the ?rst and second Writes are 
denoted by B3,], E3,2 and D3,], D33, respectively. Using the 
encoding and decoding maps of C3, We de?ne the ?rst and 
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second Writes of our constructed four-Write WOM-code as We 
did for the ?rst and second Writes of the three-Write WOM 
codes. The third and fourth Writes are de?ned in a similar Way, 
as follows. 

[0097] 1) On the third Write, a message m from the set 

{1, . . . , 2"R2>1} is Written. Let (‘§271(m)q/:(v1, . . . ,v,,) 

and let C:((C1,1,C1,2), - - - , (cmpcnj) 

[0098] be the current memory-state vector. Then, 

[0099] Where for léién, (dz-,1, c'i,2):(l,l) ifvi:l and, oth 
erWise, (c'm, c'l,2):(ci,l, cig). The decoding map D3(c) is 
de?ned to be 

[0100] 2) On the fourth Write, a message m from the set 
[0101] {1, . . . , 2”R 2’2} is Written. Let 

62,20”, (61161;, - - -1 Cn,1-Cn,2)):v:(v11 - - - 1 V"), 

[0102] Where c:((cl,l, cm), . . . , (cml, cn,2)) is the current 
memory-state vector. Then, 

€4(m,C):((C1,1iC1Q'),- - '>(Cn,1’1 Gui», 

[0103] Where for léién, (c'hl, c'l,2):(1,l) if vi:l and, 
otherWise,) (cl-,1‘, ci,2'):(ci,l, ci,2). The decoding map D4(c) is 
de?ned, as before, by 

D 4(6): D 2,2(C1,1"C1Q', - - - 

[0104] The last theorem requires both the binary tWo-Write 
and ternary tWo-Write WOM-codes to have the same number 
of cells, n. However, We can construct a four-Write binary 
WOM-code using any tWo such WOM-codes, even if they do 
not have the same number of cells. Suppose We have a WOM 
code over GF(3) With nl cells and binary WOM-code With n2 
cells. Both codes can be extended to use (nl,n2) cells. Then, 
the construction above Will give a four-Write WOM-code. 
[0105] Corollary. The best achievable sum-rate of a four 
Write WOM-code using this construction is (log25+log23)/ 
2z1.95. 
[0106] Proof: The maximum value of R3,I+R3,2 is log2 5 
and the maximum value of R2,l+R2,2is log2 3. Therefore, the 
maximum sum-rate of the constructed 

log2(5) +log2(3) :: 1-95 
2 

[0107] If We use the WOM-code over GF(3) of sum-rate 
2.2205 found in the previous subsection as the WOM-code C3 
and the binary tWo-Write WOM-code of sum-rate 1.4928 
found as the WOM-code C2, then there exists a four-Write 
WOM-code of sum-rate (2.2205+1 .4928)/2:l .8566. 

C. Multiple-Write WOM-Codes 

[0108] The construction of three- and four-Write WOM 
codes can be easily generaliZed to an arbitrary number of 
Writes. We state the folloWing theorem and skip its proof since 
it is very similar to the proofs of the corresponding theorems 
for three- and four-Write WOM-codes. 
[0109] Theorem 8. Let C3 be an [n,2; 2”R 3’l, 2”R 3’2] 
tWo-Write WOM-code over GF(3) constructed as above. Let 
C2 be an [n,t-2; 2”R 2’1, . . . , 2”R 214] binary (t—2)-Write 
WOM-code. Then, there exists a 
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t-Write WOM-code of sum-rate 

1*2 

733,1 + 733,2 + 2 R2,; 
[:1 

2 

Theorem 14 implies that if there exists a (t—2)-Write WOM 
code of sum-rate Rt_2 then there exists a t-Write WOM-code 
of sum-rate 

The folloWing corollary summarizes the possible achievable 
sum-rates of t-Write WOM-codes. 
[0110] Corollary. For ti3, there exists a t-Write WOM 
code of sum-rate 

til 
(27 - l)-lOg25 +1 

rel ’ 

27' 
I odd 

(252 U1 5 1 3 2 _ - + 

u, [even 5:2 
2 2 

If We use again the tWo-Write WOM-code over GF(3) of 
sum-rate 2.2205 and the binary tWo-Write WOM-code of 
sum-rate 1.4928 from Section IV, then for t§3 We obtain a 
t-Write WOM-code of sum-rate Rt’ Where 

til 
(27 -1)-2.22+1 
f, I odd 

2'7 
‘R’ : 1*2 

(2T _ 1)-2.22+ 1.4928 

£12 
22 

I CVCII 

Concatenated WOM-Codes 

[0111] The construction presented in the previous section 
provides us With a family of WOM-codes for all ti3. In this 
section, We Will shoW a general scheme to construct more 
families of WOM-codes. In fact, the construction in the pre 
vious section is a special case of this general scheme. 
[0112] Theorem 9. Let C* be [m, t/2;ql, . . . , ql/2 binary 
t/2-Write WOM-code Where t is an even integer. For l§I§t/2, 
let C,- be an [n, 2;2”Ri,l,2”Ri,2] tWo-Write WOM-code over 
GF(qi), as constructed above. Then, there exists an [nm, 2” 
71 1,1, 771 1,2, . . . , 771 1/21, 771 m, t] binary t-Write 
WOM-code of sum-rate 

Proof For l>i>t/2, let if“ D 1* be the encoding, decoding 
maps on the i-th Write of the WOM-code C*, respectively. The 
de?nition of El?“ 1) l-* for l>i>t/ 2, extends naturally to vectors 
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by simply invoking the maps on each entry in the vector. 
Similarly, for léiét/2, let us denote by Ei,l and Ei,2 the 
encoding maps of the ?rst and second writes, and by Di,l and 
Di,2 the decoding maps of the ?rst and second writes of the 
WOM-code Ci, respectively. We will present the speci?cation 
of the encoding and decoding maps of the constructed t-write 
WOM-code. 
[0113] In the following de?nitions of the encoding and 
decoding maps, we consider the memory-state vector c to 
have n symbols ofm bits each, i.e. c E (GF(2'"))”. For léiét 
/2, the (2i—1)-st write and 2i-th write are implemented as 
follows. 

[0114] 1. On the (2i-1) -st write, a message ml 6 {1, . . 
. , 2”’R 11} is written to the memory-state vector c 
according to 

EZH(m1,C):Ei*(§i.1(m1), 6) 

[0115] The memory-state vector c is decoded according to 

1>2.--.<c>:1>.-.1<1>.-*<c>> 
[0116] On the 2i-th write, a message m2 6 {1, . . . , 2”Ri’l} 
is written according 

e2.-<m2>:e.-*<e.-,2<m2.19mm 
[0117] 
to 

and the memory-state vector c is decoded according 

[0118] We will demonstrate how this construction works in 
the following example. 

EXAMPLE 3 

[0119] We choose a [3,3;4,3,2] three-write WOM-code as 
the code C*. This code is depicted in F1G.4 by a state diagram 
describing all three writes. The three-bit vector in each state is 
the memory-state and the number next to it is the decoded 
value. We need to ?nd three more two-write WOM-codes 
over GF(4),GF(3), and GF(2). For the code Cl over 

TABLE 1 

SUM-RATES OF CONCATENATED WOM-CODES 

Number Achieved Maximum 
ofWrites New Rate New Rate 

5 1.9689 1 7+1 5+1 w=20431 
3 

6 2-1331 1 7+1 5+1 3 W=22331 
3 

7 2-1723 17151512 082 + 982 ‘H082 + )/ :2-2634 
3 

3 22544171515132 og2 + og2 +(og2 + og2 )/ :2-3609 
3 

9 22918 1 7+1 5+1 7+1 5+1 3 O82 O82 (O82 O82 )/ :2-3908 
3 

10 2.3466 
3 = 2.4588 

GF(4), we ran a computer search to ?nd a two-write WOM 
code over GF(4) of sum-rate 2.6862. For the code C2 over 
GF(3), we use the code with sum-rate 2.22 which we found 
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above, and we use the binary two-write WOM-code of sum 
rate 1.4928 for the code C3. Then, the sum-rate of the six 
write WOM-code is 

2.6793 + 2.22 +1.49 
=2.12 7. 3 9 

[0120] It is possible to construct a ?ve-write WOM-code by 
writing a vector of n bits in the last write so its sum-rate is 

2.6862 + 2.2205 +1 
=1.68. 3 9 9 

[0121] Note that if one of the codes in the general construc 
tion is binary then we can actually use a WOM-code that 
allows more than two writes. That is, in this construction we 
can use any binary multiple-write WOM-code as the WOM 
code C3. Therefore, we can generate another family of WOM 
codes for tZS. Their maximum achievable sum-rates are 
given by the following formula 

for tZS and R,4 is the maximum achievable sum-rate for a 
(t—4)-write WOM-code. Similarly, the constructed codes 
which we obtain using the WOM-codes found above have 
sum-rates 

, 2.6862 + 2.2205 + 18,4 

1%, = f, 

[0122] where 'R t_4' is the best sum-rate of a constructed 
(t—4)-write WOM-code. Table IV summarizes these sum 
rates. 

[0123] Note that the construction is a special case of the 
generalized concatenated WOM-codes construction in which 
the WOM-code C* is chosen to be a [2,2; 3, 2] binary two 
write WOM-code. 

[0124] The general method described in Theorem 7 pro 
vides us with many more families of WOM-codes. However, 
in order to construct WOM-codes with high sum-rates, the 
WOM-code C* has to be chosen very carefully. In particular, 
it is important to choose such a WOM-code with as few cells 
as possible, since the sum of all sum-rates of the non-binary 
two-write WOM-codes is averaged over the number of cells 
of the WOM-code C*. As the number of short WOM-codes is 
small, there are only a small number of possibilities to check. 
However, our search for better WOM-codes with between six 
and ten writes using WOM-codes with few cells did not lead 
to any better results. 

Fixed-Rate WOM-Codes 

[0125] The WOM-code construction for more than two 
writes improved the achieved sum-rates only in the unre 
stricted-rate case. In this section, we present a method to 
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construct ?xed-rate WOM-codes. The method is recursive 
and is based on the previously constructed unrestricted-rate 
WOM-codes. 

[0126] Theorem 10. Let C be an [n,t;2”R1,2”R2, . . . , 2”R‘] 
t-Write WOM-code. Assume that for léiét-l there exists a 
?xed-rate WOM-code of sum-rate Ri. Let R'l, . . . , R‘, be a 

permutation of R1, . . . ,Rlsuch that R'li . . . , ZR'I. Then, 

there exists a ?xed-rate t-Write WOM-code of sum-rate 

W314i — 731/4141) 

1 + Z T 

[0127] Proof For simplicity, let us assume that R1 2 . . . ZR, 
as it Will be clear from the proof hoW to generalize to the 
arbitrary case. First, We add (R l-_1 — R t)” more cells in order 
to Write ('R ,-_1—7Z t)nbits on the last Write. This guarantees 
that the rates on the last tWo Writes are the same. Then, We add 

2(R,2—R,l)n/R2 more cells in order to Write (R,2—R,, n more 
bits on each of the last tWo Writes. This part of the last tWo 
Writes is invoked using the ?xed-rate tWo-Write WOM-code 
of sum-rate R2 and therefore the additional number of cells is 
2(R t_2—’R t_l)n/R2. This addition of cells guarantees that 
the rates on the last three Writes are all the same. In general, 
for léiét-l We add i(R H-R t_l-+l)n/Ri more cells such 
that ('R t_l-— 'R H41)” more bits are Written on each of the last 
i Writes and therefore the rates on the last i+1 Writes are all the 
same. These bits are Written using the ?xed-rate i-Write 
WOM-code Which is assumed to exist. 

[0128] With the addition of these cells, the number of bits 
Written on the i-th Write for léiét is 

1:1 

Thus, the rates on all Writes are the same and the generated 
WOM-code is ?xed-rate. 

[0129] The total number of bits We add is 

i WRH JRHH)" 

and thus the sum-rate is 

[0130] Let us demonstrate hoW to apply the last theorem. 
We start With the three-Write WOM-code. Its rates on the ?rst, 
second, and third Writes are 0.6291, 0.481 1, 0.5, respectively. 
We add 0.01 89n more cells in order to guarantee that the rates 
on the last tWo Writes are the same. Then We use the ?xed-rate 

tWo-Write WOM-code of sum-rate 1.4546. Hence We add 
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1.4546 : 0.1775n 

more cells, yielding a ?xed-rate three-Write WOM-code of 
sum-rate 

3-0.6291 _15775 
1.1964 _ I I 

[0131] If We used the best ?xed-rate tWo-Write WOM-code 
of sum-rate 1.546 and the best three-Write WOM-code of 
sum-rate 1.66, then We get a ?xed-rate three-Write WOM 
code of sum-rate 1.6263. 
[0132] Note that We could use a tWo-Write WOM-code such 
that 0.0189n bits are Written on its ?rst Write and 0.1291n bits 
are Written on its second Write. 
[0133] This Will indeed add another small improvement to 
the sum-rate, hoWever this scheme is not easy to generaliZe. 
Our goal here is to give a general method. We are aWare that 
for each individual case it is possible to use other unrestricted 
rate WOM-codes that Will provide a WOM-code of the 
desired sum-rate With slightly feWer cells. 
[0134] NoW We move to consider the four-Write WOM 
code. Its component rates are 0.6291, 0.4811, 0.413, 1/3. We 
add three more groups of cells as folloWs: 

[0135] 1) (0.413—1/3)n:0.0797n more cells, so that the last 
tWo Write have the same rate. 

[0136] 2) 2-(0.4811—0.413)n/1.4546:0.0936n more cells, 
so that the last three Writes have the same rate. 

[0137] 3) 3-(0.6291—0.4811)n/1.5731:0.2822nmore cells, 
so that the last four Writes have the same rate. 
[0138] Then, We get a ?xed-rate four-Write WOM-code 
With sum-rate 

4-0.6291 
1+ 0.0797 + 0.0936 + 0.2822 :1'7298' 

[0139] If We used the best ?xed-rate tWo- and three-Write 
WOM-codes and the best unrestricted-rate four-Write WOM 
code, then We obtain a ?xed-rate four-Write WOM-code of 
sum-rate 1.8249. Fixed-rate t-Write WOM-code for t>4 can 
be similarly obtained. We summariZe the results for the sum 
rates that We actually found and the best ones We could ?nd in 
this method in Table 2. 

TABLE 2 

SUM-RATES OF FIXED-RATE WOM-CODES 

Number Achieved Maximum 
of Writes Sum-rate Sum-rate 

3 1.5775 1.62 63 
4 1 .7298 1.8249 
5 1.8794 1.9302 
6 1.9742 2.05 70 
7 1.991 2.0692 
8 2 .03 75 2. 1 190 
9 2.0951 2.1702 

10 2.1327 2.2189 

[0140] Tables 3 and 4 shoW a comparison of the sum-rates 
of unrestricted-rate and ?xed-rate WOM-codes presented in 
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this application and the best previously known sum-rates for 
2§t§ 10. The column labeled “Best Prior” is the highest 
sum-rate achieved by a previously reported t-Write WOM 
code. The column “Achieved NeW Sum-rate” gives the sum 
rates that We actually obtained through application of the neW 
techniques. The column “Maximum NeW Sum-rate” lists the 
maximum possible sum-rates that can be obtained using our 
approach. Finally, the column “Upper Bound” gives the 
maximum possible sum-rates for t-Write WOM-codes. 

[0141] For unrestricted-rate tWo-Write WOM-codes, the 
results Were found by the computer search method. For three 
and four Writes, We used the WOM-codes described for mul 
tiple Writes, and for SétélO, We used the WOM-codes dis 
cussed for concatenated code. For ?xed-rate tWo-Write 
WOM-codes, We again used the computer search method of 
this Section providing tWo Write codes. The constructions for 
more than tWo Writes Were obtained by application of Theo 
rem 10. 

TABLE 3 

COMPARISON WITH KNOWN UNRESTRICTED-RATE 
WOM-CODES 

Number Best Achieved Maximum Upper 
of Writes Prior NeW Sum-rate NeW Sum-rate Bound 

2 1.3707 1.4928 1.585 1.585 
3 1.5302 1.6102 1.661 2 
4 1.7524 1.8566 1.9534 2.3219 
5 1.7524 1.9689 2.0431 2.585 
6 1.7524 2.1331 2.2381 2.8074 
7 1.8232 2.1723 2.2634 3 
8 1.8824 2.2544 2.3609 3.1699 
9 1.9535 2.2918 2.3908 3.3219 
10 2.0144 2.3466 2.4588 3.4594 

TABLE 4 

COMPARISON WITH KNOWN FIXED-RATE WOM-CODES 

Number Best Achieved Maximum Upper 
of Writes Prior NeW Sum-rate NeW Sum-rate Bound 

2 1.343 1.4546 1.546 1.546 
3 1.4348 1.5775 1.6263 1.9366 
4 1.6042 1.7298 1.8249 2.2436 
5 1.6279 1.8794 1.9302 2.4965 
6 1.7143 1.9742 2.0570 2.7120 
7 1.8232 1.991 2.0692 2.9001 
8 1.8824 2.0375 2.1190 3.0664 
9 1.9535 2.0951 2.1702 3.2157 
10 2.0144 2.1327 2.2189 3.3520 
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[0174] While speci?c embodiments of the present inven 
tion have been shoWn and described, it should be understood 
that other modi?cations, substitutions and alternatives are 
apparent to one of ordinary skill in the art. Such modi?ca 
tions, substitutions and alternatives can be made Without 
departing from the spirit and scope of the invention, Which 
should be determined from the appended claims. 
[0175] Various features of the invention are set forth in the 
appended claims. 

1. A method for Writing data to a non transient medium 
using WOM-codes to provide a guaranteed number of mul 
tiple Writes, the method comprising steps of: 

de?ning a parity check matrix Hv for a linear code C[n,k] to 
code the data such that the i-th column of R , léién, is 
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the i-th column of R if vi:0 and otherWise it is a Zeros 
column, Wherein {V1, v2, . . . , v, lvcl} is an ordering ofa 
set of memory vectors Vc; 

de?ning a set Vc of memory vectors sl such that each 
vector v has a rank as folloWs: 

Writing a symbol over an alphabet of siZe lVcl. 
2. The method of claim 1, further comprising: on a second 

Write, Writing a second vector s2 of n-k bits, Whereinvl be the 
programmed vector ont he ?rst Write, 

and v2 is a solution of the equation R ~v2:s1+s2. 
3. A method for decoding data encoded according to claim 

2, Wherein the decoding applies a decoding map such that D2, 
if c is the vector of programmed cells, then the decoded value 
of the n-k bits is given by D2(c):R CIR ~vl+ R v2:sl+sl+ 
s2:s2. 

4. The method of claim 1, applied to a linear code, such that 
the parity check matrix R is selected unifonaly at random 
and an indicator random variable Xv (R ) on the space of all 
matrices as folloWs 

1 ifveVC 
0 otherwise 

5. The method of claim 1, performed by an encoder to 
conduct tWo-Write. 

6. A method or Writing data to a non transient medium 
using WOM-codes to provide more than tWo Writes, the 
method comprising: 

de?ning parity-check matrix R of siZe (n—k)><n, Wherein 
for a vector v of length n over GF(q), let R (v) be the 
matrix H With Zero columns replacing the columns that 
correspond to the positions of the non-Zero values in v. 
and a set of memory vectors Vcw is de?ned such that 

de?ning a non binary tWo-Write code according to claim 1, 
Wherein [n, 2; |Vc(q)|, q”_k]; 

Writing data to the medium more than tWo times over the 
alphabet of V00’). 

7. An electronic device that Writes to a memory according 
to claim 6. 

8. An electronic device that Writes to a memory according 
to claim 1. 


